Skip to main content
Log in

The Electron Temperature and Anisotropy in the Solar Wind. Comparison of the Core and Halo Populations

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Estimating the temperature of solar wind particles and their anisotropies is particularly important for understanding the origin of their deviations from thermal equilibrium and the effects this has. In the absence of energetic events, the velocity distribution of electrons reveals a dual structure with a thermal (Maxwellian) core and a suprathermal (kappa) halo. This article presents a detailed observational analysis of these two components, providing estimations of their temperatures and temperature anisotropies, and decoding any potential interdependence that their properties may indicate. The dataset used in this study includes more than 120 000 of the distributions measured by three missions in the ecliptic within an extended range of heliocentric distances from 0.3 to over 4 AU. The core temperature is found to decrease with the radial distance, while the halo temperature slightly increases, clarifying an apparent contradiction in previous observational analyses and providing valuable clues about the temperature of the kappa-distributed populations. For low values of the power-index kappa, these two components manifest a clear tendency to deviate from isotropy in the same direction, which seems to confirm the existence of mechanisms with similar effects on both components, e.g., the solar wind expansion, or the particle heating by the fluctuations. However, the existence of plasma states with anticorrelated anisotropies of the core and halo populations and the increase in their number for high values of the power-index kappa suggest a dynamic interplay of these components, mediated, most probably, by the anisotropy-driven instabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Anderson, B.R., Skoug, R.M., Steinberg, J.T., McComas, D.J.: 2012, Variability of the solar wind suprathermal electron strahl. J. Geophys. Res. 117, A04107. DOI .

    ADS  Google Scholar 

  • Christon, S.P., Williams, D.J., Mitchell, D.G., Frank, L.A., Huang, C.Y.: 1989, Spectral characteristics of plasma sheet ion and electron populations during undisturbed geomagnetic conditions. J. Geophys. Res. 94, 13409. DOI .

    Article  ADS  Google Scholar 

  • Collier, M.R., Hamilton, D.C., Gloeckler, G., Bochsler, P., Sheldon, R.B.: 1996, Neon-20, Oxigen-16, and Helium-4 densities, temperatures, and suprathermal tails in the solar wind determined with WIND/MASS. Geophys. Res. Lett. 23, 1191. DOI .

    Article  ADS  Google Scholar 

  • Feldman, W.C., Asbridge, J.R., Bame, S.J., Montgomery, M.D., Gary, S.P.: 1975, Solar wind electrons. J. Geophys. Res. 80, 4181. DOI .

    Article  ADS  Google Scholar 

  • Gary, S.P., Saito, S.: 2007, Broadening of solar wind strahl pitch-angles by the electron/electron instability: Particle-in-cell simulations. Geophys. Res. Lett. 34, L14111. DOI .

    Article  ADS  Google Scholar 

  • Issautier, K., Meyer-Vernet, N., Moncuquet, M., Hoang, S.: 1998, Solar wind radial and latitudinal structure: Electron density and core temperature from Ulysses thermal noise spectroscopy. J. Geophys. Res. 103, 1969. DOI .

    Article  ADS  Google Scholar 

  • Lazar, M., Poedts, S., Fichtner, H.: 2015, Destabilizing effects of the suprathermal populations in the solar wind. Astron. Astrophys. 582, A124. DOI .

    Article  ADS  Google Scholar 

  • Lazar, M., Poedts, S., Schlickeiser, R.: 2014, The interplay of Kappa and core populations in the solar wind: Electromagnetic electron cyclotron instability. J. Geophys. Res. 119, 9395. DOI .

    Article  Google Scholar 

  • Lazar, M., Schlickeiser, R., Poedts, S.: 2012, Suprathermal particle populations in the solar wind and corona. In: Lazar, M. (ed.) Exploring the Solar Wind (InTech). Ch. 11, http://www.intechopen.com/books/exploring-the-solar-wind . DOI

    Chapter  Google Scholar 

  • Lazar, M., Poedts, S., Schlickeiser, R., Dumitrache, C.: 2015, Towards realistic parametrization of the kinetic anisotropy and the resulting instabilities in space plasmas. Electromagnetic electron-cyclotron instability in the solar wind. Mon. Not. Roy. Astron. Soc. 446, 3022. DOI .

    Article  ADS  Google Scholar 

  • Lin, R.P.: 1998, Wind observations of suprathermal electrons in the interplanetary medium. Space Sci. Rev. 86, 61. DOI .

    Article  ADS  Google Scholar 

  • Livadiotis, G., McComas, D.J.: 2013, Understanding kappa distributions: A toolbox for space science and astrophysics. Space Sci. Rev. 175, 183. DOI .

    Article  ADS  Google Scholar 

  • Ma, C., Summers, D.: 1998, Formation of power-law energy spectra in space plasmas by stochastic acceleration due to whistler-mode waves. Geophys. Res. Lett. 25, 4099. DOI .

    Article  ADS  Google Scholar 

  • Maksimovic, M., Gary, S.P., Skoug, R.M.: 2000, Solar wind electron suprathermal strength and temperature gradients: Ulysses observations. J. Geophys. Res. 105, 18337. DOI .

    Article  ADS  Google Scholar 

  • Maksimovic, M., Pierrard, V., Riley, P.: 1997, Ulysses electron distributions fitted with Kappa functions. Geophys. Res. Lett. 24, 1151. DOI .

    Article  ADS  Google Scholar 

  • Maksimovic, M., Zouganelis, I., Chaufray, J.-Y., Issautier, K., Scime, E.E., Littleton, J.E., Marsch, E., McComas, D.J., Salem, C., Lin, R.P., Elliott, H.: 2005, Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU. J. Geophys. Res. 110, A09104. DOI .

    Article  ADS  Google Scholar 

  • Ogilvie, K.W., Fitzenreiter, R., Desch, M.: 2000, Electrons in the low-density solar wind. J. Geophys. Res. 105(27), 277. DOI .

    Google Scholar 

  • Pagel, C., Gary, S.P., de Koning, C.A., Skoug, R.M., Steinberg, J.T.: 2007, Scattering of suprathermal electrons in the solar wind: ACE observations. J. Geophys. Res. 112, A04103. DOI .

    Article  ADS  Google Scholar 

  • Pavan, J., Viñas, A.F., Yoon, P.H., Ziebell, L.F., Gaelzer, R.: 2013, Solar wind strahl broadening by self-generated plasma waves. Astrophys. J. 769, L30. DOI .

    Article  ADS  Google Scholar 

  • Phillips, J.L., Gosling, J.T.: 1990, Radial evolution of solar wind thermal electron distributions due to expansion and collisions. J. Geophys. Res. 95, 4217. DOI .

    Article  ADS  Google Scholar 

  • Phillips, J.L., Gosling, J.T., McComas, D.J., Bame, S.J., Gary, S.P.: 1989, Anisotropic thermal electron distributions in the solar wind. J. Geophys. Res. 94, 6563. DOI .

    Article  ADS  Google Scholar 

  • Pierrard, V., Lazar, M.: 2010, Kappa distributions: Theory and applications in space plasmas. Solar Phys. 267, 153. DOI .

    Article  ADS  Google Scholar 

  • Pierrard, V., Lazar, M., Schlickeiser, R.: 2011, Evolution of the electron distribution function in the wave turbulence of the solar wind. Solar Phys. 269, 421. DOI .

    Article  ADS  Google Scholar 

  • Pierrard, V., Maksimovic, M., Lemaire, J.: 1999, Electron velocity distribution function from the solar wind to the corona. J. Geophys. Res. 104, 17021. DOI .

    Article  ADS  Google Scholar 

  • Pierrard, V., Maksimovic, M., Lemaire, J.: 2001, Core, halo and strahl electrons in the solar wind. Astrophys. Space Sci. 277, 195. DOI .

    Article  ADS  MATH  Google Scholar 

  • Pilipp, W.G., Miggenrieder, H., Montgomery, M.D., Mühlhäuser, K.-H., Rosenbauer, H., Schwenn, R.: 1987, Characteristics of electron velocity distribution functions in the solar wind derived from the Helios plasma experiment. J. Geophys. Res. 92, 1075. DOI .

    Article  ADS  Google Scholar 

  • Pilipp, W.G., Miggenrieder, H., Mühlhäuser, K.-H., Rosenbauer, H., Schwenn, R.: 1990, Large-scale variations of thermal electron parameters in the solar wind between 0.3 and 1 AU. J. Geophys. Res. 95, 6305. DOI .

    Article  ADS  Google Scholar 

  • Salem, C., Hubert, D., Lacombe, C., Bale, S.D., Mangeney, A., Larson, D.E., Lin, R.P.: 2003, Electron properties and Coulomb collisions in the solar wind at 1 AU: Wind observations. Astrophys. J. 585, 1147. DOI .

    Article  ADS  Google Scholar 

  • Scudder, J.D.: 1992, On the causes of temperature change in inhomogeneous low-density astrophysical plasmas. Astrophys. J. 398, 299. DOI .

    Article  ADS  Google Scholar 

  • Scudder, J.D., Lind, D.L., Ogilvie, K.W.: 1973, Electron observations in the solar wind and magnetosheath. J. Geophys. Res. 78, 6535. DOI .

    Article  ADS  Google Scholar 

  • Serbu, G.P.: 1972, Explorer 35 observations of solar wind electron density, temperature, and anisotropy. J. Geophys. Res. 77, 1703. DOI .

    Article  ADS  Google Scholar 

  • Shaaban, S.M., Lazar, M., Poedts, S., Elhanbaly, A.: 2016, The interplay of the solar wind proton core and halo populations: EMIC instability. J. Geophys. Res.. DOI .

    Google Scholar 

  • Štverák, Š., Trávníček, P., Maksimovic, M., Marsch, E., Fazakerley, A.N., Scime, E.E.: 2008, Electron temperature anisotropy constraints in the solar wind. J. Geophys. Res. 113, A03103. DOI .

    ADS  Google Scholar 

  • Štverák, Š., Maksimovic, M., Trávníček, P., Marsch, E., Fazakerley, A.N., Scime, E.E.: 2009, Radial evolution of nonthermal electron populations in the low-latitude solar wind: Helios, Cluster, and Ulysses Observations. J. Geophys. Res. 114, A05104. DOI .

    ADS  Google Scholar 

  • Vasyliunas, V.M.: 1968, A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73, 2839. DOI .

    Article  ADS  Google Scholar 

  • Viñas, A.F., Wong, H.F., Klimas, A.J.: 2000, Generation of electron suprathermal tails in the upper solar atmosphere: Implications for coronal heating. Astrophys. J. 528, 509. DOI .

    Article  ADS  Google Scholar 

  • Viñas, A.F., Gurgiolo, C., Nieves-Chinchilla, T., Gary, S.P., Goldstein, M.L.: 2010, Whistler waves driven by anisotropic strahl velocity distributions. AIP Conf. Proc. 1216, 265. DOI .

    Article  ADS  Google Scholar 

  • Vocks, C.: 2012, Kinetic models for whistler wave scattering of electrons in the solar corona and wind. Space Sci. Rev. 172, 303. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the Scientific Federal Policy in the framework of the program Interuniversity Attraction Pole for the project P7/08 CHARM. The authors acknowledge support from the Katholieke Universiteit Leuven, the Ruhr-University Bochum, and Alexander von Humboldt Foundation. These results were obtained in the framework of the projects GOA/2015-014 (KU Leuven), G0A2316N (FWO-Vlaanderen), and C 90347 (ESA Prodex 9). The research leading to these results has also received funding from the European Commission’s Seventh Framework Programme FP7-PEOPLE-2010-IRSES-269299 project-SOLSPANET ( www.solspanet.eu ). The authors further acknowledge the grant 15-17490S of the Czech Science Foundation. The data can be obtained from S. Štverák on request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Pierrard.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierrard, V., Lazar, M., Poedts, S. et al. The Electron Temperature and Anisotropy in the Solar Wind. Comparison of the Core and Halo Populations. Sol Phys 291, 2165–2179 (2016). https://doi.org/10.1007/s11207-016-0961-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-016-0961-7

Keywords

Navigation