Skip to main content
Log in

Physical Conditions in the Source Region of a Zebra Structure

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We analyze the physical conditions in the source region of a zebra structure, observed with the Ondřejov radiospectrograph during the 1 August 2010 solar flare. To determine the gyro-frequency harmonic numbers of the observed zebra lines, we compute the magnetic field strength, the electron density, and their spatial scales in the source region of the zebra structure. The region where the flare occurred is analyzed using EUV (171 Å and 335 Å) observations. To determine the conditions in the zebra source region, the magnetic field structure is reconstructed using observed photospheric magnetic field data. By computing the dependence of the magnetic field vs. height in this reconstruction and by comparing the magnetic field strength derived from the zebra structure, we determine the dependence of the electron density vs. height in the zebra source-region. We identify the loops where the zebra structure was generated at heights of about 2.5 – 3.3 Mm. Assuming the barometric law for the electron density, we determine the temperature in the zebra source-region to be \(T \approx 2.0 \times 10^{4}~\mbox{K}\). Comparing the obtained values of the temperature and electron density in the zebra source-region with a model of the solar atmosphere, we find that the zebra structure was generated in the transition region, in agreement with our previous results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Alissandrakis, C.E.: 1981, On the computation of constant alpha force-free magnetic field. Astron. Astrophys. 100, 197. ADS .

    ADS  Google Scholar 

  • Aurass, H., Klein, K.-L., Zlotnik, E.Y., Zaitsev, V.V.: 2003, Solar type IV burst spectral fine structures. I. Observations. Astron. Astrophys. 410, 1001. ADS , DOI .

    Article  ADS  MATH  Google Scholar 

  • Bárta, M., Karlický, M.: 2006, Interference patterns in solar radio spectra: high-resolution structural analysis of the corona. Astron. Astrophys. 450, 359. ADS , DOI .

    Article  ADS  Google Scholar 

  • Chernov, G.P.: 1976, Microstructure in the continuous radiation of type IV meter bursts. Observations and model of the source. Soviet Astron. 20, 449. ADS .

    ADS  Google Scholar 

  • Chernov, G.P.: 1990, Whistlers in the solar corona and their relevance to fine structures of type IV radio emission. Solar Phys. 130, 75. ADS , DOI .

    Article  ADS  Google Scholar 

  • Chernov, G.P.: 2011, Fine Structure of Solar Radio Bursts, Springer, Berlin. ADS , DOI .

    Book  Google Scholar 

  • Chernov, G.P., Yan, Y.-H., Fu, Q.-J.: 2014, The importance of source positions during radio fine structure observations. Res. Astron. Astrophys. 14, 831. ADS , DOI .

    Article  ADS  Google Scholar 

  • Chernov, G.P., Yan, Y.H., Fu, Q.J., Tan, C.M.: 2005, Recent data on zebra patterns. Astron. Astrophys. 437, 1047. ADS , DOI .

    Article  ADS  Google Scholar 

  • Dory, R.A., Guest, G.E., Harris, E.G.: 1965, Unstable electrostatic plasma waves propagating perpendicular to a magnetic field. Phys. Rev. Lett. 14, 131. ADS , DOI .

    Article  ADS  Google Scholar 

  • Dulk, G.A.: 1985, Radio emission from the sun and stars. Annu. Rev. Astron. Astrophys. 23, 169. ADS , DOI .

    Article  ADS  Google Scholar 

  • Jiřička, K., Karlický, M.: 2008, Narrowband pulsating decimeter structure observed by the New Ondřejov solar radio spectrograph. Solar Phys. 253, 95. ADS , DOI .

    Article  ADS  Google Scholar 

  • Karlický, M.: 2013, Radio continua modulated by waves: zebra patterns in solar and pulsar radio spectra? Astron. Astrophys. 552, A90. ADS , DOI .

    Article  ADS  Google Scholar 

  • Karlický, M., Yasnov, L.V.: 2015, Determination of plasma parameters in solar zebra radio sources. Astron. Astrophys. 581, A115. ADS , DOI .

    Article  ADS  Google Scholar 

  • Kuijpers, J.M.E.: 1975, Collective wave-particle interactions in solar type IV radio sources. PhD thesis, Utrecht. ADS .

  • Kuznetsov, A.A.: 2005, Generation of microwave bursts with zebra pattern by nonlinear interaction of Bernstein modes. Astron. Astrophys. 438, 341. ADS , DOI .

    Article  ADS  Google Scholar 

  • Kuznetsov, A.A., Tsap, Y.T.: 2007, Loss-cone instability and formation of zebra patterns in type IV solar radio bursts. Solar Phys. 241, 127. ADS , DOI .

    Article  ADS  Google Scholar 

  • LaBelle, J., Treumann, R.A., Yoon, P.H., Karlický, M.: 2003, A model of zebra emission in solar type IV radio bursts. Astrophys. J. 593, 1195. ADS , DOI .

    Article  ADS  Google Scholar 

  • Ledenev, V.G., Yan, Y., Fu, Q.: 2006, Interference mechanism of “zebra-pattern” formation in solar radio emission. Solar Phys. 233, 129. ADS , DOI .

    Article  ADS  Google Scholar 

  • Ledenev, V.G., Yan, Y.-H., Fu, Q.-J.: 2001, Anisotropic beam model for the spectral observations of radio burst fine structures on 1998 April 15. Chin. J. Astron. Astrophys. 1, 475. ADS .

    Article  ADS  Google Scholar 

  • Leka, K.D., Barnes, G., Crouch, A.D., Metcalf, T.R., Gary, G.A., Jing, J., Liu, Y.: 2009, Resolving the 180-degree ambiguity in solar vector magnetic field data. Solar Phys. 260, 83. ADS , DOI .

    Article  ADS  Google Scholar 

  • Metcalf, T.R.: 1994, Resolving the 180-degree ambiguity in vector magnetic field measurements: the ‘minimum’ energy solution. Solar Phys. 155, 235. ADS , DOI .

    Article  ADS  Google Scholar 

  • Nakagawa, Y., Raadu, M.A.: 1972, On practical representation of magnetic field. Solar Phys. 25, 127. ADS , DOI .

    Article  ADS  Google Scholar 

  • Ning, Z., Yan, Y., Fu, Q., Lu, Q.: 2000, Microwave M burst on May 3 1999. Astron. Astrophys. 364, 793. ADS .

    ADS  Google Scholar 

  • Priest, E.R.: 1982, Solar Magneto-Hydrodynamics, D. Reidel Publ. Comp., Dordrecht. ADS .

    Book  Google Scholar 

  • Selhorst, C.L., Silva-Válio, A., Costa, J.E.R.: 2008, Solar atmospheric model over a highly polarized 17 GHz active region. Astron. Astrophys. 488, 1079. ADS , DOI .

    Article  ADS  Google Scholar 

  • Tan, B.: 2010, A physical explanation of solar microwave zebra pattern with the current-carrying plasma loop model. Astrophys. Space Sci. 325, 251. ADS , DOI .

    Article  ADS  Google Scholar 

  • Tan, B., Tan, C., Zhang, Y., Mészárosová, H., Karlický, M.: 2014, Statistics and classification of the microwave zebra patterns associated with solar flares. Astrophys. J. 780, 129. ADS , DOI .

    Article  ADS  Google Scholar 

  • Tan, B.L., Yan, Y.H., Tan, C.M., Sych, R.A., Gao, G.M.: 2012, Microwave zebra pattern structures in the X2.2 solar flare on 2011 February 15. Astrophys. J. 744, 166. ADS , DOI .

    Article  ADS  Google Scholar 

  • Wiegelmann, T.: 2004, Optimization code with weighting function for the reconstruction of coronal magnetic fields. Solar Phys. 219, 87. ADS , DOI .

    Article  ADS  Google Scholar 

  • Yasnov, L.V., Karlický, M.: 2004, The growth rate of upper-hybrid waves and dynamics of microwave zebra structures. Solar Phys. 219, 289. ADS , DOI .

    Article  ADS  Google Scholar 

  • Zheleznyakov, V.V., Zlotnik, E.Y.: 1975, Cyclotron wave instability in the corona and origin of solar radio emission with fine structure. III. Origin of zebra-pattern. Solar Phys. 44, 461. ADS , DOI .

    Article  ADS  Google Scholar 

  • Zlotnik, E.Y.: 2013, Instability of electrons trapped by the coronal magnetic field and its evidence in the fine structure (zebra pattern) of solar radio spectra. Solar Phys. 284, 579. ADS , DOI .

    Article  ADS  Google Scholar 

  • Zlotnik, E.Y., Zaitsev, V.V., Aurass, H., Mann, G., Hofmann, A.: 2003, Solar type IV burst spectral fine structures. II. Source model. Astron. Astrophys. 410, 1011. ADS , DOI .

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for constructive comments that improved the paper. Data are courtesy of the NASA/SDO and the AIA and HMI science teams. M.K. acknowledges support from grants P209/12/0103 (GA CR) and the European grant FP7-SPACE-2013-1 F-CHROMA (No. 606862). L.Y. and A.S. acknowledge support by the RFBR grant (No. 16-02-00254)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Yasnov.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasnov, L.V., Karlický, M. & Stupishin, A.G. Physical Conditions in the Source Region of a Zebra Structure. Sol Phys 291, 2037–2047 (2016). https://doi.org/10.1007/s11207-016-0952-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-016-0952-8

Keywords

Navigation