Skip to main content
Log in

Extreme Geomagnetic Storms – 1868 – 2010

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present the first large statistical study of extreme geomagnetic storms based on historical data from the time period 1868 – 2010. This article is the first of two companion papers. Here we describe how the storms were selected and focus on their near-Earth characteristics. The second article presents our investigation of the corresponding solar events and their characteristics. The storms were selected based on their intensity in the aa index, which constitutes the longest existing continuous series of geomagnetic activity. They are analyzed statistically in the context of more well-known geomagnetic indices, such as the Kp and Dcx/Dst index. This reveals that neither Kp nor Dcx/Dst provide a comprehensive geomagnetic measure of the extreme storms. We rank the storms by including long series of single magnetic observatory data. The top storms on the rank list are the New York Railroad storm occurring in May 1921 and the Quebec storm from March 1989. We identify key characteristics of the storms by combining several different available data sources, lists of storm sudden commencements (SSCs) signifying occurrence of interplanetary shocks, solar wind in-situ measurements, neutron monitor data, and associated identifications of Forbush decreases as well as satellite measurements of energetic proton fluxes in the near-Earth space environment. From this we find, among other results, that the extreme storms are very strongly correlated with the occurrence of interplanetary shocks (91 – 100 %), Forbush decreases (100 %), and energetic solar proton events (70 %). A quantitative comparison of these associations relative to less intense storms is also presented. Most notably, we find that most often the extreme storms are characterized by a complexity that is associated with multiple, often interacting, solar wind disturbances and that they frequently occur when the geomagnetic activity is already elevated. We also investigate the semiannual variation in storm occurrence and confirm previous findings that geomagnetic storms tend to occur less frequently near solstices and that this tendency increases with storm intensity. However, we find that the semiannual variation depends on both the solar wind source and the storm level. Storms associated with weak SSC do not show any semiannual variation, in contrast to weak storms without SSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Akasofu, S.-I.: 1981, Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 28, 121.

    Article  ADS  Google Scholar 

  • Araki, T., Funato, K., Igucgi, T., Kamei, T.: 1993, Direct detection of solar wind magnetic pressure effect on ground magnetic field. Geophys. Res. Lett. 20, 775.

    Article  ADS  Google Scholar 

  • Bartels, J.: 1932, Terrestrial-magnetic activity and its relation to solar phenomena. Terr. Magn. Atmos. Electr. 37, 1.

    Article  MATH  Google Scholar 

  • Bell, J.T., Gussenhoven, M.S., Mullen, E.G.: 1997, Super storms. J. Geophys. Res. 102(A7), 14189.

    Article  ADS  Google Scholar 

  • Beeck, J., Sanderson, T.R.: 1989, Mean free path of low-energy protons upstream of selected interplanetary shocks. J. Geophys. Res. 94, 8769.

    Article  ADS  Google Scholar 

  • Bohlin, J.D.: 1977, Extreme-ultraviolet observations of coronal holes. Solar Phys. 51, 377.

    Article  ADS  Google Scholar 

  • Bryant, D.A., Cline, T.L., Desai, U.D., McDonald, F.B.: 1962, Explorer 12 observations of solar cosmic rays and energetic storm particles after the solar flare of September 28, 1961. J. Geophys. Res. 67, 4983.

    Article  ADS  Google Scholar 

  • Burton, R.K., McPherron, R.L., Russell, C.T.: 1975, An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 80, 4204.

    Article  ADS  Google Scholar 

  • Cane, H.V.: 1985, The evolution of interplanetary shocks. J. Geophys. Res. 90, 191.

    Article  ADS  Google Scholar 

  • Cane, H.V.: 1988, The large-scale structure of flare associated interplanetary shocks. J. Geophys. Res. 93, 1.

    Article  ADS  Google Scholar 

  • Cane, H.V.: 2000, Coronal mass ejections and Forbush decreases. Space Sci. Rev. 93(1/2), 55.

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G.: 2003, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996 – 2002. J. Geophys. Res. 108, A4. DOI .

    Google Scholar 

  • Cane, H.V., Richardson, I.G., Rosenvinge, T.T.: 1996, Cosmic ray decreases: 1964 – 1994. J. Geophys. Res. 101, 21561. DOI .

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G., Rosenvinge, T.T.: 2010, A study of solar energetic particle events of 1997 – 2006: their composition and associations. J. Geophys. Res. 115, 8101.

    Article  Google Scholar 

  • Chilingarian, A., Bostanjyan, N.: 2010, On the relation of the Forbush decreases detected by ASEC monitors during the 23rd solar activity cycle with ICME parameters. Adv. Space Res. 45, 614.

    Article  ADS  Google Scholar 

  • Cliver, E.W., Ling, A.G., Wise, J.E., Lanzerotti, L.J.: 1999, A prediction of geomagnetic activity for solar cycle 23. J. Geophys. Res. 104, 6871.

    Article  ADS  Google Scholar 

  • Cliver, E.W., Kamide, Y., Ling, A.G.: 2002, The semiannual variation of geomagnetic activity: phases and profiles for 130 years. J. Atmos. Solar-Terr. Phys. 64, 47.

    Article  ADS  Google Scholar 

  • Cohen, C.M.S.: 2006, Observations of energetic storm particles: an overview, solar eruptions and energetic particles. In: Gopalswamy, N., Mewaldt, R., Torsti, J. (eds.) Solar Eruptions and Energetic Particles, Geophysical Monograph Series 165, 275.

    Chapter  Google Scholar 

  • Cooke, D.J., Humble, J.E., Shea, M.A., Smart, D.F., Lund, N.: 1991, On cosmic-ray cut-off terminology. Nuovo Cimento C 14, 213.

    Article  ADS  Google Scholar 

  • Cortie, A.L.: 1912, Sunspots and terrestrial magnetic phenomena 1898 – 1911: the cause of the annual variation in magnetic disturbances. Mon. Not. Roy. Astron. Soc. 73, 52.

    Article  ADS  Google Scholar 

  • Crooker, N.U., Feynman, J., Gosling, J.T.: 1977, On the high correlation between long-term averages of solar wind speed and geomagnetic activity. J. Geophys. Res. 82, 1933.

    Article  ADS  Google Scholar 

  • Crooker, N.U., Cliver, E.W., Tsurutani, B.T.: 1992, The semiannual variation of great geomagnetic storms and the post-shock Russell–McPherron effect preceding coronal mass ejecta. Geophys. Res. Lett. 19, 429.

    Article  ADS  Google Scholar 

  • Crosby, N.B., Heynderickx, D., Jiggens, P., Aran, A., Sanahuja, B., Truscott, P., Lei, F., Jacobs, J., Poedts, S., Gabriel, S., Sandberg, I., Glover, A., Hilgers, A.: 2015, SEPEM: a tool for statistical modelling the solar energetic particle environment. Space Weather 13. DOI .

  • Dungey, J.R.: 1961, Interplanetary magnetic fields and auroral zones. Phys. Rev. Lett. 6, 47.

    Article  ADS  Google Scholar 

  • Dierckxsens, M., Tziotziou, K., Dalla, S., Patsou, I., Marsh, M.S., Crosby, N.B., Malandraki, O., Tsiropoula, G.: 2015, Relationship between solar energetic particles and properties of flares and CMEs: statistical analysis of solar cycle 23 events. Solar Phys. 290(3), 841. DOI .

    Article  ADS  Google Scholar 

  • Dumbović, M., Vršnak, B., Čalogović, J., Karlica, M.: 2011, Cosmic ray modulation by solar wind disturbances. Astron. Astrophys. 531, A91. DOI .

    Article  ADS  Google Scholar 

  • Dumbović, M., Vršnak, B., Čalogović, J., Župan, R.: 2012, Cosmic ray modulation by different types of solar wind disturbances. Astron. Astrophys. 538, A28. DOI .

    Article  ADS  Google Scholar 

  • Echer, E., Gonzales, W.D., Tsurutani, B.T.: 2008, Interplanetary conditions leading to superintense geomagnetic storms (\(\mathrm{Dst} <-250~\mbox{nT}\)) during solar cycle 23. Geophys. Res. Lett. 35, L06S03. DOI .

    Article  Google Scholar 

  • Feldstein, Y.I., Grafe, A., Gromova, L.I., Popov, V.A.: 1997, Auroral electrojets during geomagnetic storms. J. Geophys. Res. 102, 14223.

    Article  ADS  Google Scholar 

  • Feynman, J., Crooker, N.U.: 1978, The solar wind at the turn of the century. Nature 275, 626.

    Article  ADS  Google Scholar 

  • Forbush, S.E.: 1937, On the effects in cosmic-ray intensity observed during the recent magnetic storm. Phys. Rev. 51, 1108.

    Article  ADS  Google Scholar 

  • Gonzalez, A.L.C., Gonzales, W.D., Dutra, S.L.G., Tsurutani, B.T.: 1993, Periodic variations in geomagnetic activity: a study based on the Ap index. J. Geophys. Res. 98, 9215.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M.: 1994, What is a geomagnetic storm? J. Geophys. Res. 99, 5771.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Tsurutani, B.T., Lepping, R.P., Schwenn, R.: 2002, Interplanetary phenomena associated with very intense geomagnetic storms. J. Atmos. Solar-Terr. Phys. 64, 173.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Echer, E., Clua-Gonzalez, A.L., Tsurutani, B.: 2007, Interplanetary origin of intense geomagnetic storms (\(\mathrm{Dst}<-100~\mbox{nT}\)) during solar cycle 23. Geophys. Res. Lett. 34, L06101. DOI .

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Echer, E., Tsurutani, B.T., Gonzales, A., Dal Lago, A.: 2011a, Interplanetary origin of intense, superintense and extreme geomagnetic storms. Space Sci. Rev. 158, 69.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Echer, E., Clua de Gonzales, A.L., Tsurutani, B.T., Lakhina, G.S.: 2011b, Extreme geomagnetic storms, recent Gleissberg cycles and space era – superintense storms. J. Atmos. Solar-Terr. Phys. 73, 1447.

    Article  ADS  Google Scholar 

  • Gosling, J.T., Bame, S.J., McComas, D.J., Phillips, J.L.: 1990, Coronal mass ejections and large geomagnetic storms. Geophys. Res. Lett. 17, 901.

    Article  ADS  Google Scholar 

  • Huttunen-Heikinmkaa, K., Valtonen, E.: 2009, Interplanetary fast forward shocks and energetic storm particle events above 1.5 MeV. Ann. Geophys. 27, 767.

    Article  ADS  Google Scholar 

  • Kallenrode, M.-B.: 1995, Particle acceleration at interplanetary shocks – observations at a few tens of keVs some tens of MeV. Adv. Space Res. 15(8 – 9), 375.

    Article  ADS  Google Scholar 

  • Kamide, Y., Yokoyama, N., Gonzalez, W., Tsurutani, B.T., Daglis, I.A., Brekke, A., Masuda, S.: 1998, Two step development of geomagnetic storms. J. Geophys. Res. 103, 6917.

    Article  ADS  Google Scholar 

  • Kan, J.R., Lee, L.C.: 1979, Energy coupling and the solar wind dynamo. Geophys. Res. Lett. 6, 577.

    Article  ADS  Google Scholar 

  • Karinen, A., Mursula, K.: 2005, A new reconstruction of the Dst index for 1932 – 2002. Ann. Geophys. 23, 475.

    Article  ADS  Google Scholar 

  • Klecker, B., Scholer, M., Hovestadt, D., Gloeckler, G., Ipavich, F.M.: 1981, Spectral and compositional variations of low energy ions during an energetic storm particle event. Astrophys. J. 251, 393.

    Article  ADS  Google Scholar 

  • Lee, M.A.: 2005, Coupled hydromagnetic wave excitation and ion acceleration at an evolving coronal/interplanetary shock. Astrophys. J. Suppl. 158, 38.

    Article  ADS  Google Scholar 

  • Léfevre, L., Vennerstrøm, S., Dumbović, M., Vršnak, B., Sudar, D., Artlt, R., Clette, F., Crosby, N.: 2016, Detailed analysis of solar data related to historical extreme geomagnetic storms: 1868 – 2010. Solar Phys. In this issue. DOI .

    Google Scholar 

  • Legrand, J.P., Simon, P.A.: 1981, Ten cycles of solar and geomagnetic activity. Solar Phys. 70, 173.

    Article  ADS  Google Scholar 

  • Lockwood, M., Rouillard, A.P., Finch, I.D.: 2009, The rise and fall of open solar flux during the current grand solar maximum. Astrophys. J. 700, 937.

    Article  ADS  Google Scholar 

  • Mäkelä, P., Gopalswamy, N., Akiyama, S., Xie, H., Yashiro, S.: 2011, Energetic storm particle events in coronal mass ejection-driven shocks. J. Geophys. Res. 116, A08101. DOI .

    Article  ADS  Google Scholar 

  • Malandraki, O.E., Lario, D., Lanzerotti, L.J., Sarris, E.T., Geranios, A., Tsiropoula, G.: 2005, October/November 2003 ICMEs: ACE/EPAM solar energetic particle observations (Special Section: ‘Violent Sun – Earth Connection Events of October – November 2003’). J. Geophys. Res. 110, A09S06. DOI .

    Article  ADS  Google Scholar 

  • Mayaud, P.N.: 1973, A 100-Year Series of Geomagnetic Data: Indices Aa, Storm Sudden Commencements, IAGA Bull. 33, Internat. Union of Geod. and Geophys, Paris.

    Google Scholar 

  • McIntosh, D.H.: 1959, On the annual variation of magnetic disturbance. Phil. Trans. Roy. Soc. London Ser. A, Math. Phys. Sci. 251, 525.

    Article  ADS  Google Scholar 

  • Meng, C.-I.: 1984, Dynamic variation of the auroral oval during intense magnetic storms. J. Geophys. Res. 89, 227.

    Article  ADS  Google Scholar 

  • Milan, S.E., Boakes, P.D., Hubert, B.: 2008, Response of the expanding/contracting polar cap to weak and strong solar wind driving: implications for substorm onset. J. Geophys. Res. 113, A09215. DOI .

    Article  ADS  Google Scholar 

  • Milan, S.E., Hutchinson, J., Boakes, P.D., Hubert, B.: 2009, Ann. Geophys. 27, 2913.

    Article  ADS  Google Scholar 

  • Mursula, K., Holappa, L., Karinen, A.: 2008, Correct normalization of the Dst index. Astrophys. Space Sci. Trans. 4, 41.

    Article  ADS  Google Scholar 

  • Nakai, H., Kamide, Y.: 2003, Substorm-associated large-scale magnetic field changes in the magnetotail: a prerequisite for “magnetotail deflation” events. Ann. Geophys. 21, 869.

    Article  ADS  Google Scholar 

  • van Nes, P., Roelof, E.C., Reinhard, R.: 1984a, Diffusion coefficients of low energy protons upstream of quasi-parallel interplanetary shocks. Adv. Space Res. 4, 315.

    ADS  Google Scholar 

  • van Nes, P., Reinhard, R., Sanderson, T.R., Wenzel, K.-P., Zwickl, R.D.: 1984b, The energy spectrum of 35- to 1600-keV protons associated with interplanetary shocks. J. Geophys. Res. 89, 2122.

    Article  ADS  Google Scholar 

  • Nevanlinna, H., Kataja, E.: 1993, An extension of the geomagnetic activity index series aa for two solar (1844 – 1868). Geophys. Res. Lett. 20, 2703.

    Article  ADS  Google Scholar 

  • Newell, P.T., Sotirelis, T., Liou, K., Meng, C.-I., Rich, F.J.: 2007, A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res. 112, A01206. DOI .

    ADS  Google Scholar 

  • Newton, H.W.: 1948, A distinctive geomagnetic epoch, 1941 June 9 – 14. Observatory 68, 60.

    ADS  Google Scholar 

  • Reames, D.V.: 1999, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys. 264, 189. DOI .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2011a, Galactic cosmic ray intensity response to interplanetary coronal mass ejections/magnetic clouds in 1995 – 2009. Solar Phys. 270, 609.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2011b, Geoeffectiveness (Dst and Kp) of interplanetary coronal mass ejections during 1995 – 2009 and implications for storm forecasting. Space Weather 9, S07005. DOI .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Webb, D.F., Zhang, J., Berdichevsky, D.B., Biesecker, D.A., Kasper, J.C., Kataoka, R., Steinberg, J.T., Thompson, B.J., Wu, C.-C., Zhukov, N.: 2006, Major geomagnetic storms (\(\mathrm{Dst}\leq 100~\mbox{nT}\)) generated by co-rotating interaction regions. J. Geophys. Res. 11, A07S09. DOI .

    Google Scholar 

  • Russell, C.T., McPherron, R.L.: 1973, Semiannual variation of geomagnetic activity. J. Geophys. Res. 78, 92.

    Article  ADS  Google Scholar 

  • Sarris, E.T., van Allen, J.: 1974, Effects of interplanetary shock waves on energetic charged particles. J. Geophys. Res. 79, 4157.

    Article  ADS  Google Scholar 

  • Siscoe, G.L., Formisano, V., Lazarus, A.J.: 1968, Relation between geomagnetic sudden impulses and solar wind pressure changes – an empirical investigation. J. Geophys. Res. 73, 4869.

    Article  ADS  Google Scholar 

  • Skoug, R.M., Gosling, J.T., Steinberg, J.T., McComas, D.J., Smith, C.W., Ness, N.F., Hu, Q., Burlaga, L.F.: 2004, Extremely high speed solar wind: 29 – 30 October 2003. J. Geophys. Res. 109, A09102. DOI .

    Article  ADS  Google Scholar 

  • Smart, D.F., Shea, M.A., Flückiger, E.O.: 2000, Space Sci. Rev. 93, 305.

    Article  ADS  Google Scholar 

  • Sugiura, M.: 1964, Hourly values of equatorial Dst for the IGY. Ann. Int. Geophys. Year 35, 49.

    Google Scholar 

  • Svalgaard, L.: 1977, Geomagnetic activity: dependence on solar wind parameters. In: Zirker, J.B. (ed.) Coronal Holes and High Speed Wind Streams, Colorado Associated University Press, Boulder, 371.

    Google Scholar 

  • Svalgaard, L., Cliver, E.W., Ling, A.G.: 2002, The semiannual variation of great geomagnetic storms. Geophys. Res. Lett. 29, 1765.

    Article  ADS  Google Scholar 

  • Svalgaard, L., Cliver, E.W.: 2010, Heliospheric magnetic field 1835 – 2009. J. Geophys. Res. 115. DOI .

  • Tsurutani, B.T., Lakhina, G.S.: 2013, An extreme coronal mass ejection and consequences for the magnetosphere and Earth. Geophys. Res. Lett. DOI .

    Google Scholar 

  • Tsurutani, T., Lakhina, G.S.: 2014, An extreme coronal mass ejection and consequences for the magnetosphere and Earth. Geophys. Res. Lett. 41, 287.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzales, W.D., Tang, F., Lee, Y.T.: 1992, Great magnetic storms. Geophys. Res. Lett. 19, 73.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Echer, E., Guarnieri, F.L., Koyzera, J.U.: 2008, CAWSES November 7 – 8, 2004, superstorm: complex solar and interplanetary features in the post-solar maximum phase. Geophys. Res. Lett. 35, L06S05. DOI .

    Article  Google Scholar 

  • Vennerstroem, S.: 2000, Long-term rise in geomagnetic activity – a close connection between quiet days and storms. Geophys. Res. Lett. 27, 69.

    Article  ADS  Google Scholar 

  • Vennerstroem, S.: 2001, Interplanetary sources of magnetic storms: a statistical study. J. Geophys. Res. 106, 29175.

    Article  ADS  Google Scholar 

  • Verbanac, G., Živković, S., Vršnak, B., Bandić, M., Hojsak, T.: 2013, Comparison of geoeffectiveness of coronal mass ejections and corotating interaction regions. Astron. Astrophys. 558, A58.

    Article  Google Scholar 

  • Wang, Y.M., Ye, P.Z., Wang, S., Xue, X.H.: 2003, An interplanetary cause of large geomagnetic storms: fast forward shock overtaking preceeding magnetic cloud. Geophys. Res. Lett. 30(13), 1700.

    Article  ADS  Google Scholar 

  • Wu, C.-C., Dryer, M.: 1996, Predicting the initial IMF Bz polarity’s change at 1 AU caused by shocks that precede coronal mass ejections. Geophys. Res. Lett. 23, 1709.

    Article  ADS  Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F.: 2008, Interplanetary origin of multi-dip geomagnetic storms. J. Geophys. Res. 113, A00A12. DOI .

    Article  Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (\(\mathrm{Dst} <-100~\mbox{nT}\)) during 1996 – 2005. J. Geophys. Res. 112, A10102. DOI .

    ADS  Google Scholar 

  • Zurbuchen, T.H., Gloeckler, G., Ipavich, F., Raines, J., Smith, C.W., Fisk, L.A.: 2004, On the fast coronal mass ejections in October/November 2003: ACE-SWICS results. Geophys. Res. Lett. 31, L11805. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The results presented in this article use several data sets kindly provided by the listed contributors: The Dcx index was provided by the University of Oulu, Finland, at http://dcx.oulu.fi . The Kp index was provided GeoForschungs Zentrum (GFZ) in Potsdam. The geomagnetic observatory hourly values were obtained from the WDCC1 for Geomagnetism in Edinburgh, which in turn obtained the data from the world-wide network of magnetometers. The OMNI data were provided from the GSFC/SPDF OMNIWeb interface at http://omniweb.gsfc.nasa.gov . The SSC lists were obtained from the International Service of Geomagnetic Indices (ISGI) and the National Geophysical Data Center (NGDC). The GLE-event data was provided by the NMDB project ( www.nmdb.eu ), which in turn obtained the data from the world-wide network of neutron monitors.

The work has received funding from the European Union Seventh Framework Programme (FP7/2007 – 2013) under grant agreement n. 263252 [COMESEP]. ESP figures are based on the ESA SEPEM reference proton dataset and software developed under the COMESEP project. M. Dumbović and B. Vršnak furthermore acknowledge financial support by the Croatian Science Foundation under the project 6212 “Solar and Stellar Variability”.

Any opinion, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vennerstrom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vennerstrom, S., Lefevre, L., Dumbović, M. et al. Extreme Geomagnetic Storms – 1868 – 2010. Sol Phys 291, 1447–1481 (2016). https://doi.org/10.1007/s11207-016-0897-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-016-0897-y

Keywords

Navigation