Skip to main content

Advertisement

Log in

Active Region Emergence and Remote Flares

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We study the effect of new emerging solar active regions on the large-scale magnetic environment of existing regions. We first present a theoretical approach to quantify the “interaction energy” between new and pre-existing regions as the difference between i) the summed magnetic energies of their individual potential fields and ii) the energy of their superposed potential fields. We expect that this interaction energy can, depending upon the relative arrangements of newly emerged and pre-existing magnetic flux, indicate the existence of “topological” free magnetic energy in the global coronal field that is independent of any “internal” free magnetic energy due to coronal electric currents flowing within the newly emerged and pre-existing flux systems. We then examine the interaction energy in two well-studied cases of flux emergence, but find that the predicted energetic perturbation is relatively small compared to energies released in large solar flares. Next, we present an observational study of the influence of the emergence of new active regions on flare statistics in pre-existing active regions, using NOAA’s Solar Region Summary and GOES flare databases. As part of an effort to precisely determine the emergence time of active regions in a large event sample, we find that emergence in about half of these regions exhibits a two-stage behavior, with an initial gradual phase followed by a more rapid phase. Regarding flaring, we find that the emergence of new regions is associated with a significant increase in the occurrence rate of X- and M-class flares in pre-existing regions. This effect tends to be more significant when pre-existing and new emerging active regions are closer. Given the relative weakness of the interaction energy, this effect suggests that perturbations in the large-scale magnetic field, such as topology changes invoked in the “breakout” model of coronal mass ejections, might play a significant role in the occurrence of some flares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. At http://www.lmsal.com/solarsoft/pfss_links/ or via the PFSS_VIEWER interface in SSWIDL if this URL is no longer valid.

  2. These reports are online; see ftp://ftp.swpc.noaa.gov/pub/warehouse/README .

  3. ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/solar-flares/x-rays/goes/ .

References

  • Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. Solar Phys. 9, 131.

    ADS  Google Scholar 

  • Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510, 485.

    Article  ADS  Google Scholar 

  • Balasubramaniam, K.S., Pevtsov, A.A., Cliver, E.W., Martin, S.F., Panasenco, O.: 2011, The disappearing solar filament of 2003 June 11: a three-body problem. Astrophys. J. 743, 202. DOI .

    Article  ADS  Google Scholar 

  • Bruzek, A.: 1952, Über die Ursache der “Plötzlichen” Filamentauflösungen. Mit 4 Textabbildungen. Z. Astrophys. 31, 99.

    ADS  Google Scholar 

  • Bumba, V., Howard, R.: 1965, Large-scale distribution of solar magnetic fields. Astrophys. J. 141, 1502. DOI .

    Article  ADS  Google Scholar 

  • Cheung, M.C.M., DeRosa, M.L.: 2012, A method for data-driven simulations of evolving solar active regions. Astrophys. J. 757, 147. DOI .

    Article  ADS  Google Scholar 

  • Chintzoglou, G., Zhang, J.: 2013, Reconstructing the subsurface three-dimensional magnetic structure of a solar active region using SDO/HMI observations. Astrophys. J. Lett. 764, L3. DOI .

    Article  ADS  Google Scholar 

  • Dalla, S., Fletcher, L., Walton, N.A.: 2007, Flare productivity of newly-emerged paired and isolated solar active regions. Astron. Astrophys. 468, 1103. DOI .

    Article  ADS  Google Scholar 

  • Dalla, S., Fletcher, L., Walton, N.A.: 2008, Invisible sunspots and rate of solar magnetic flux emergence. Astron. Astrophys. 479, L1. DOI .

    Article  ADS  Google Scholar 

  • Dove, J.B., Gibson, S.E., Rachmeler, L.A., Tomczyk, S., Judge, P.: 2011, A ring of polarized light: evidence for twisted coronal magnetism in cavities. Astrophys. J. Lett. 731, L1. DOI .

    Article  ADS  Google Scholar 

  • Emslie, A.G., Dennis, B.R., Shih, A.Y., Chamberlin, P.C., Mewaldt, R.A., Moore, C.S., Share, G.H., Vourlidas, A., Welsch, B.T.: 2012, Global energetics of thirty-eight large solar eruptive events. Astrophys. J. 759, 71. DOI .

    Article  ADS  Google Scholar 

  • Feynman, J., Martin, S.F.: 1995, The initiation of coronal mass ejections by newly emerging magnetic flux. J. Geophys. Res. 100, 3355. DOI .

    Article  ADS  Google Scholar 

  • Fisher, G.H., Longcope, D.W., Metcalf, T.R., Pevtsov, A.A.: 1998, Coronal heating in active regions as a function of global magnetic variables. Astrophys. J. 508, 885.

    Article  ADS  Google Scholar 

  • Fludra, A., Ireland, J.: 2008, Radiative and magnetic properties of solar active regions. I. Global magnetic field and EUV line intensities. Astron. Astrophys. 483, 609. DOI .

    Article  ADS  Google Scholar 

  • Forbes, T.G.: 2000, A review on the genesis of coronal mass ejections. J. Geophys. Res. 105, 23153.

    Article  ADS  Google Scholar 

  • Freeland, S.L., Handy, B.N.: 1998, Data analysis with the SolarSoft system. Solar Phys. 182, 497. DOI .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., Titov, V.S., Mikić, Z.: 2012, Non-neutralized electric current patterns in solar active regions: origin of the shear-generating Lorentz force. Astrophys. J. 761, 61. DOI .

    Article  ADS  Google Scholar 

  • González Hernández, I., Hill, F., Lindsey, C.: 2007, Calibration of seismic signatures of active regions on the far side of the Sun. Astrophys. J. 669, 1382. DOI .

    Article  ADS  Google Scholar 

  • Harvey, K.L., Zwaan, C.: 1993, Properties and emergence of bipolar active regions. Solar Phys. 148, 85.

    Article  ADS  Google Scholar 

  • Heyvarts, J., Priest, E.R., Rust, D.M.: 1977, An emerging flux model for the solar flare phenoma. Astrophys. J. 216, 123.

    Article  ADS  Google Scholar 

  • Hudson, H., Fletcher, L., McTiernan, J.: 2014, Cycle 23 variation in solar flare productivity. Solar Phys. 289, 1341. DOI .

    Article  ADS  Google Scholar 

  • Kazachenko, M.D., Canfield, R.C., Longcope, D.W., Qiu, J.: 2010, Sunspot rotation, flare energetics, and flux rope helicity: the halloween flare on 2003 October 28. Astrophys. J. 722, 1539. DOI .

    Article  ADS  Google Scholar 

  • Leka, K.D., Barnes, G.: 2003, Photospheric magnetic field properties of flaring versus flare-quiet active regions. I. Data, general approach, and sample results. Astrophys. J. 595, 1277.

    Article  ADS  Google Scholar 

  • Leka, K.D., Canfield, R.C., McClymont, A.N., van Driel Gesztelyi, L.: 1996, Evidence for current-carrying emerging flux. Astrophys. J. 462, 547.

    Article  ADS  Google Scholar 

  • Leka, K.D., Barnes, G., Birch, A.C., Gonzalez-Hernandez, I., Dunn, T., Javornik, B., Braun, D.C.: 2013, Helioseismology of pre-emerging active regions. I. Overview, data, and target selection criteria. Astrophys. J. 762, 130. DOI .

    Article  ADS  Google Scholar 

  • Liewer, P.C., González Hernández, I., Hall, J.R., Lindsey, C., Lin, X.: 2014, Testing the reliability of predictions of far-side active regions from helioseismology using STEREO far-side observations of solar activity. Solar Phys. 289, 3617. DOI .

    Article  ADS  Google Scholar 

  • Liggett, M., Zirin, H.: 1985, Emerging flux in active regions. Solar Phys. 97, 51. DOI .

    Article  ADS  Google Scholar 

  • Longcope, D.W., McKenzie, D., Cirtain, J., Scott, J.: 2005, Observations of separator reconnection to an emerging active region. Astrophys. J. 630, 596.

    Article  ADS  Google Scholar 

  • Luhmann, J.G., Li, Y., Zhao, X., Yashiro, S.: 2003, Coronal Magnetic Field Context of Simple CMEs Inferred from Global Potential Field Models. Solar Phys. 213, 367. DOI .

    Article  ADS  Google Scholar 

  • Mallman, E.P., Parsons, T.: 2008, A global search for stress shadows. J. Geophys. Res. 113, 12304. DOI .

    Article  ADS  Google Scholar 

  • Martin, S.F.: 1998, Conditions for the formation and maintenance of filaments – (invited review). Solar Phys. 182, 107.

    Article  ADS  Google Scholar 

  • Martin, S.F., Dezso, L., Antalova, A., Kucera, A., Harvey, K.L.: 1982, Emerging magnetic flux, flares and filaments – FBS interval 16 – 23 June 1980. Adv. Space Res. 2, 39. DOI .

    Article  ADS  Google Scholar 

  • McClymont, A.N., Fisher, G.H.: 1989, On the mechanical energy available to drive solar flares. AGU Geophys. Mon. Ser. 54, 219.

    Google Scholar 

  • Moon, Y.J., Choe, G.S., Park, Y.D., Wang, H., Gallagher, P.T., Chae, J., Yun, H.S., Goode, P.R.: 2002, Statistical evidence for sympathetic flares. Astrophys. J. 574, 434. DOI .

    Article  ADS  Google Scholar 

  • Pevtsov, A.A.: 2000, Transequatorial loops in the solar corona. Astrophys. J. 531, 553. DOI .

    Article  ADS  Google Scholar 

  • Pevtsov, A.A., Kazachenko, M.: 2004, On the role of the large-scale magnetic reconnection in the coronal heating. In: Walsh, R.W., Ireland, J., Danesy, D., Fleck, B. (eds.) SOHO 15 Coronal Heating, ESA SP-575, 241.

    Google Scholar 

  • Priest, E.: 2014, Magnetohydrodynamics of the Sun, Cambridge University Press, Cambridge.

    Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI .

    Article  ADS  Google Scholar 

  • Scherrer, P., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A., Schou, J., Rosenberg, W., Springer, L., Tarbell, T., Title, A., Wolfson, C., Zayer, I., The MDI Engineering Team: 1995, The solar oscillations investigation – Michelson Doppler imager. Solar Phys. 162, 129.

    ADS  Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., DeRosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165.

    Article  ADS  Google Scholar 

  • Schrijver, C.J., Higgins, P.A.: 2015, A Statistical Study of Distant Consequences of Large Solar Energetic Events. Solar Phys. 290, 2943. DOI .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., Title, A.M.: 2011, Long-range magnetic couplings between solar flares and coronal mass ejections observed by SDO and STEREO. J. Geophys. Res. 116, 4108. DOI .

    Article  Google Scholar 

  • Schrijver, C.J., Zwaan, C.: 2000, Solar and Stellar Magnetic Activity, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Schrijver, C.J., DeRosa, M.L., Title, A.M., Metcalf, T.R.: 2005, The nonpotentiality of active-region coronae and the dynamics of the photospheric magnetic field. Astrophys. J. 628, 501.

    Article  ADS  Google Scholar 

  • Sun, X., Hoeksema, J.T., Liu, Y., Wiegelmann, T., Hayashi, K., Chen, Q., Thalmann, J.: 2012, Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation. Astrophys. J. 748, 77. DOI .

    Article  ADS  Google Scholar 

  • Tarr, L., Longcope, D.: 2012, Calculating energy storage due to topological changes in emerging active region NOAA AR 11112. Astrophys. J. 749, 64. DOI .

    Article  ADS  Google Scholar 

  • Tarr, L.A., Longcope, D.W., McKenzie, D.E., Yoshimura, K.: 2014, Quiescent reconnection rate between emerging active regions and preexisting field, with associated heating: NOAA AR 11112. Solar Phys. 289, 3331. DOI .

    Article  ADS  Google Scholar 

  • Toriumi, S., Yokoyama, T.: 2011, Numerical experiments on the two-step emergence of twisted magnetic flux tubes in the Sun. Astrophys. J. 735, 126. DOI .

    Article  ADS  Google Scholar 

  • Török, T., Leake, J.E., Titov, V.S., Archontis, V., Mikić, Z., Linton, M.G., Dalmasse, K., Aulanier, G., Kliem, B.: 2014, Distribution of electric currents in solar active regions. Astrophys. J. Lett. 782, L10. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.M., Sheeley, N.R. Jr.: 1999, Filament eruptions near emerging bipoles. Astrophys. J. Lett. 510, L157. DOI .

    Article  ADS  Google Scholar 

  • Watson, F., Fletcher, L., Dalla, S., Marshall, S.: 2009, Modelling the longitudinal asymmetry in sunspot emergence: the role of the Wilson depression. Solar Phys. 260, 5. DOI .

    Article  ADS  Google Scholar 

  • Welsch, B.T.: 2006, Magnetic flux cancellation and coronal magnetic energy. Astrophys. J. 638, 1101.

    Article  ADS  Google Scholar 

  • Wheatland, M.S.: 2001, Rates of flaring in individual active regions. Solar Phys. 203, 87. DOI .

    Article  ADS  Google Scholar 

  • Yeates, A.R., Mackay, D.H., van Ballegooijen, A.A.: 2008, Modelling the global solar corona II: coronal evolution and filament chirality comparison. Solar Phys. 247, 103. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the referee for providing a detailed review of our manuscript, and for valuable suggestions to improve it, including the suggestion of super-active-region connections within the solar interior. We thank the American taxpayers for supporting this work. We are also grateful to Hugh Hudson, Mike Wheatland, and Silvia Dalla for reading a draft of this paper, and offering suggestions that improved it. We acknowledge funding from the NSF’s National Space Weather Program under award AGS-1024862, the NASA Heliophysics Theory Program (grant NNX11AJ65G), and the Coronal Global Evolutionary Model (CGEM) award NSF AGS 1321474.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixing Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Welsch, B.T. Active Region Emergence and Remote Flares. Sol Phys 291, 383–410 (2016). https://doi.org/10.1007/s11207-016-0851-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-016-0851-z

Keywords

Navigation