Skip to main content
Log in

Formation of Coronal Large-Amplitude Waves and the Chromospheric Response

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

An in-depth analysis of numerical simulations is performed to obtain a deeper insight into the nature of various phenomena occurring in the solar atmosphere as a consequence of the eruption of unstable coronal structures. Although the simulations take into account only the most basic characteristics of a flux-rope eruption, the simulation analysis reveals important information on various eruption-related effects. It quantifies the relation between the eruption dynamics and the evolution of the large-amplitude coronal magnetohydrodynamic wave and the associated chromospheric downward-propagating perturbation. We show that the downward propagation of the chromospheric Moreton-wave disturbance can be approximated by a constant-amplitude switch-on shock that moves through a medium of rapidly decreasing Alfvén velocity. The presented analysis reveals the nature of secondary effects that are observed as coronal upflows, secondary shocks, various forms of wave-trains, delayed large-amplitude slow disturbances, transient coronal depletions, etc. We also show that the eruption can cause an observable Moreton wave and a secondary coronal front only if it is powerful enough and is preferably characterized by significant lateral expansion. In weaker eruptions, only the coronal and transition-region signatures of primary waves are expected to be observed. In powerful events, the primary wave moves at an Alfvén Mach number significantly larger than 1 and steepens into a shock that is due to the nonlinear evolution of the wavefront. After the eruption-driven phase, the perturbation evolves as a freely propagating simple wave, characterized by a significant deceleration, amplitude decrease, and wave-profile broadening. In weak events the coronal wave does not develop into a shock and propagates at a speed close to the ambient magnetosonic speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Afanasyev, A.N., Uralov, A.M.: 2011, Coronal shock waves, EUV waves, and their relation to CMEs. II. Modeling MHD shock wave propagation along the solar surface, using nonlinear geometrical acoustics. Solar Phys. 273, 479. DOI .

    Article  ADS  Google Scholar 

  • Asai, A., Ishii, T.T., Isobe, H., Kitai, R., Ichimoto, K., UeNo, S., Nagata, S., Morita, S., Nishida, K., Shiota, D., Oi, A., Akioka, M., Shibata, K.: 2012, First simultaneous observation of an H\(\upalpha\) Moreton wave, EUV wave, and filament/prominence oscillations. Astrophys. J. Lett. 745, L18. DOI .

    Article  ADS  Google Scholar 

  • Chen, P.F., Ding, M.D., Fang, C.: 2005, Synthesis of CME-associated Moreton and EIT wave features from MHD simulations. Space Sci. Rev. 121, 201. DOI .

    Article  ADS  Google Scholar 

  • Chen, P.F., Fang, C., Shibata, K.: 2005, A full view of EIT waves. Astrophys. J. 622, 1202. DOI .

    Article  ADS  Google Scholar 

  • Chen, P.F., Wu, S.T., Shibata, K., Fang, C.: 2002, Evidence of EIT and Moreton waves in numerical simulations. Astrophys. J. Lett. 572, L99. DOI .

    Article  ADS  Google Scholar 

  • Cohen, O., Attrill, G.D.R., Manchester, W.B. IV, Wills-Davey, M.J.: 2009, Numerical simulation of an EUV coronal wave based on the 2009 February 13 CME event observed by STEREO. Astrophys. J. 705, 587. DOI .

    Article  ADS  Google Scholar 

  • Cohen, O., Attrill, G.D.R., Schwadron, N.A., Crooker, N.U., Owens, M.J., Downs, C., Gombosi, T.I.: 2010, Numerical simulation of the 12 May 1997 CME event: The role of magnetic reconnection. J. Geophys. Res. 115, A10104. DOI .

    Article  ADS  Google Scholar 

  • Downs, C., Roussev, I.I., van der Holst, B., Lugaz, N., Sokolov, I.V., Gombosi, T.I.: 2011, Studying extreme ultraviolet wave transients with a digital laboratory: Direct comparison of extreme ultraviolet wave observations to global magnetohydrodynamic simulations. Astrophys. J. 728, 2. DOI .

    Article  ADS  Google Scholar 

  • Downs, C., Roussev, I.I., van der Holst, B., Lugaz, N., Sokolov, I.V.: 2012, Understanding SDO/AIA observations of the 2010 June 13 EUV wave event: Direct insight from a global thermodynamic MHD simulation. Astrophys. J. 750, 134. DOI .

    Article  ADS  Google Scholar 

  • Gallagher, P.T., Long, D.M.: 2011, Large-scale bright fronts in the solar corona: A review of “EIT waves”. Space Sci. Rev. 158, 365. DOI .

    Article  ADS  Google Scholar 

  • Gary, G.A.: 2001, Plasma beta above a solar active region: Rethinking the paradigm. Solar Phys. 203, 71. DOI .

    Article  ADS  Google Scholar 

  • Goedbloed, J.P., Keppens, R., Poedts, S.: 2003, Computer simulations of solar plasmas. Space Sci. Rev. 107, 63. DOI .

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Chertok, I.M., Kuzmenko, I.V., Afanasyev, A.N., Meshalkina, N.S., Kalashnikov, S.S., Kubo, Y.: 2011, Coronal shock waves, EUV waves, and their relation to CMEs. I. Reconciliation of “EIT waves”, type II radio bursts, and leading edges of CMEs. Solar Phys. 273, 433. DOI .

    Article  ADS  Google Scholar 

  • Hoilijoki, S., Pomoell, J., Vainio, R., Palmroth, M., Koskinen, H.E.J.: 2013, Interpreting solar EUV wave observations from different viewing angles using an MHD model. Solar Phys. 286, 493. DOI .

    Article  ADS  Google Scholar 

  • Kienreich, I.W., Veronig, A.M., Muhr, N., Temmer, M., Vršnak, B., Nitta, N.: 2011, Case study of four homologous large-scale coronal waves observed on 2010 April 28 and 29. Astrophys. J. Lett. 727, L43. DOI .

    Article  ADS  Google Scholar 

  • Kienreich, I.W., Muhr, N., Veronig, A.M., Berghmans, D., De Groof, A., Temmer, M., Vršnak, B., Seaton, D.B.: 2013, Solar TErrestrial Relations Observatory-A (STEREO-A) and PRoject for On-Board Autonomy 2 (PROBA2) quadrature observations of reflections of three EUV waves from a coronal hole. Solar Phys. 286, 201. DOI .

    Article  ADS  Google Scholar 

  • Klimchuk, J.A., van Driel-Gesztelyi, L., Schrijver, C.J., Melrose, D.B., Fletcher, L., Gopalswamy, N., Harrison, R.A., Mandrini, C.H., Peter, H., Tsuneta, S., Vršnak, B., Wang, J.-X.: 2009, Commission 10: Solar activity. In: van der Hucht, K.A. (ed.) Trans. IAU 27A, 79. DOI .

    Google Scholar 

  • Kozarev, K.A., Korreck, K.E., Lobzin, V.V., Weber, M.A., Schwadron, N.A.: 2011, Off-limb solar coronal wavefronts from SDO/AIA extreme-ultraviolet observations – implications for particle production. Astrophys. J. Lett. 733, L25. DOI .

    Article  ADS  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: 1987, Fluid Mechanics, 2nd edn. Pergamon Press, Oxford, 385.

    MATH  Google Scholar 

  • Liu, W., Ofman, L.: 2014, Advances in observing various coronal EUV waves in the SDO era and their seismological applications (invited review). Solar Phys. 289, 3233. DOI .

    Article  ADS  Google Scholar 

  • Long, D.M., DeLuca, E.E., Gallagher, P.T.: 2011, The wave properties of coronal bright fronts observed using SDO/AIA. Astrophys. J. Lett. 741, L21. DOI .

    Article  ADS  Google Scholar 

  • Low, B.C., Hundhausen, J.R.: 1995, Magnetostatic structures of the solar corona. 2: The magnetic topology of quiescent prominences. Astrophys. J. 443, 818. DOI .

    Article  ADS  Google Scholar 

  • Lulić, S., Vršnak, B., Žic, T., Kienreich, I.W., Muhr, N., Temmer, M., Veronig, A.M.: 2013, Formation of coronal shock waves. Solar Phys. 286, 509. DOI .

    Article  ADS  Google Scholar 

  • Ma, S., Raymond, J.C., Golub, L., Lin, J., Chen, H., Grigis, P., Testa, P., Long, D.: 2011, Observations and interpretation of a low coronal shock wave observed in the EUV by the SDO/AIA. Astrophys. J. 738, 160. DOI .

    Article  ADS  Google Scholar 

  • Mei, Z., Udo, Z., Lin, J.: 2012, Numerical experiments of disturbance to the solar atmosphere caused by eruptions. Sci. China Ser. A 55, 1316. DOI .

    Google Scholar 

  • Moreton, G.E.: 1960, H\(\upalpha\) observations of flare-initiated disturbances with velocities \({\sim}\,1000~\mbox{km}/\mbox{sec}\). Astron. J. 65, 494. DOI .

    Article  ADS  Google Scholar 

  • Moreton, G.E., Ramsey, H.E.: 1960, Recent observations of dynamical phenomena associated with solar flares. Publ. Astron. Soc. Pac. 72, 357. DOI .

    Article  ADS  Google Scholar 

  • Muhr, N., Vršnak, B., Temmer, M., Veronig, A.M., Magdalenić, J.: 2010, Analysis of a global Moreton wave observed on 2003 October 28. Astrophys. J. 708, 1639. DOI .

    Article  ADS  Google Scholar 

  • Muhr, N., Veronig, A.M., Kienreich, I.W., Temmer, M., Vršnak, B.: 2011, Analysis of characteristic parameters of large-scale coronal waves observed by the solar-terrestrial relations observatory/extreme ultraviolet imager. Astrophys. J. 739, 89. DOI .

    Article  ADS  Google Scholar 

  • Olmedo, O., Vourlidas, A., Zhang, J., Cheng, X.: 2012, Secondary waves and/or the “reflection” from and “transmission” through a coronal hole of an extreme ultraviolet wave associated with the 2011 February 15 X2.2 flare observed with SDO/AIA and STEREO/EUVI. Astrophys. J. 756, 143. DOI .

    Article  ADS  Google Scholar 

  • Ontiveros, V., Vourlidas, A.: 2009, Quantitative measurements of coronal mass ejection-driven shocks from LASCO observations. Astrophys. J. 693, 267. DOI .

    Article  ADS  Google Scholar 

  • Patsourakos, S., Vourlidas, A.: 2012, On the nature and genesis of EUV waves: A synthesis of observations from SOHO, STEREO, SDO, and Hinode (invited review). Solar Phys. 281, 187. DOI .

    ADS  Google Scholar 

  • Patsourakos, S., Vourlidas, A., Stenborg, G.: 2010, The genesis of an impulsive coronal mass ejection observed at ultra-high cadence by AIA on SDO. Astrophys. J. Lett. 724, L188. DOI .

    Article  ADS  Google Scholar 

  • Patsourakos, S., Vourlidas, A., Wang, Y.M., Stenborg, G., Thernisien, A.: 2009, What is the nature of EUV waves? First STEREO 3D observations and comparison with theoretical models. Solar Phys. 259, 49. DOI .

    Article  ADS  Google Scholar 

  • Payne-Scott, R., Yabsley, D.E., Bolton, J.G.: 1947, Relative times of arrival of solar noise on different radio frequencies. Nature 160, 256. DOI .

    Article  ADS  Google Scholar 

  • Pomoell, J., Vainio, R., Kissmann, R.: 2008, MHD modeling of coronal large-amplitude waves related to CME lift-off. Solar Phys. 253, 249. DOI .

    Article  ADS  Google Scholar 

  • Priest, E.R.: 1982, Solar Magneto-hydrodynamics, Reidel, Dordrecht, 203.

    Book  Google Scholar 

  • Schmidt, J.M., Ofman, L.: 2010, Global simulation of an extreme ultraviolet imaging telescope wave. Astrophys. J. 713, 1008. DOI .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., Aulanier, G., Title, A.M., Pariat, E., Delannée, C.: 2011, The 2011 February 15 X2 flare, ribbons, coronal front, and mass ejection: Interpreting the three-dimensional views from the solar dynamics observatory and STEREO guided by magnetohydrodynamic flux-rope modeling. Astrophys. J. 738, 167. DOI .

    Article  ADS  Google Scholar 

  • Selwa, M., Poedts, S., DeVore, C.R.: 2012, Dome-shaped EUV waves from rotating active regions. Astrophys. J. Lett. 747, L21. DOI .

    Article  ADS  Google Scholar 

  • Selwa, M., Poedts, S., DeVore, C.R.: 2013, Numerical simulations of dome-shaped EUV waves from different active-region configurations. Solar Phys. 284, 515. DOI .

    Article  ADS  Google Scholar 

  • Shen, Y., Liu, Y.: 2012a, Evidence for the wave nature of an extreme ultraviolet wave observed by the atmospheric imaging assembly on board the solar dynamics observatory. Astrophys. J. 754, 7. DOI .

    Article  ADS  Google Scholar 

  • Shen, Y., Liu, Y.: 2012b, Simultaneous observations of a large-scale wave event in the solar atmosphere: From photosphere to corona. Astrophys. J. Lett. 752, L23. DOI .

    Article  ADS  Google Scholar 

  • Shen, Y., Liu, Y., Su, J., Li, H., Zhao, R., Tian, Z., Ichimoto, K., Shibata, K.: 2013, Diffraction, refraction, and reflection of an extreme-ultraviolet wave observed during its interactions with remote active regions. Astrophys. J. Lett. 773, L33. DOI .

    Article  ADS  Google Scholar 

  • Temmer, M., Vršnak, B., Veronig, A.M.: 2013, The wave-driver system of the off-disk coronal wave of 17 January 2010. Solar Phys. 287, 441. DOI .

    Article  ADS  Google Scholar 

  • Temmer, M., Vršnak, B., Žic, T., Veronig, A.M.: 2009, Analytic modeling of the Moreton wave kinematics. Astrophys. J. 702, 1343. DOI .

    Article  ADS  Google Scholar 

  • Tóth, G.: 1996, A general code for modeling MHD flows on parallel computers: Versatile advection code. Astrophys. Lett. Commun. 34, 245.

    ADS  Google Scholar 

  • Uchida, Y.: 1968, Propagation of hydromagnetic disturbances in the solar corona and Moreton’s wave phenomenon. Solar Phys. 4, 30. DOI .

    Article  ADS  Google Scholar 

  • Uchida, Y.: 1974, Behavior of the flare produced coronal MHD wavefront and the occurrence of type II radio bursts. Solar Phys. 39, 431. DOI .

    Article  ADS  Google Scholar 

  • Uchida, Y., Altschuler, M.D., Newkirk, G. Jr.: 1973, Flare-produced coronal MHD-fast-mode wavefronts and Moreton’s wave phenomenon. Solar Phys. 28, 495. DOI .

    Article  ADS  Google Scholar 

  • van Driel-Gesztelyi, L., Schrijver, C.J., Klimchuk, J.A., Charbonneau, P., Fletcher, L., Hasan, S.S., Hudson, H.S., Kusano, K., Mandrini, C.H., Peter, H., Vršnak, B., Yan, Y.: 2012, Commission 10: Solar activity. In: van der Hucht, K.A. (ed.) Trans. IAU 28A, 69. DOI .

    Google Scholar 

  • Vernazza, J.E., Avrett, E.H., Loeser, R.: 1981, Structure of the solar chromosphere. III – Models of the EUV brightness components of the quiet-sun. Astrophys. J. Suppl. 45, 635. DOI .

    Article  ADS  Google Scholar 

  • Veronig, A.M., Temmer, M., Vršnak, B.: 2008, High-cadence observations of a global coronal wave by STEREO EUVI. Astrophys. J. Lett. 681, L113. DOI .

    Article  ADS  Google Scholar 

  • Veronig, A.M., Muhr, N., Kienreich, I.W., Temmer, M., Vršnak, B.: 2010, First observations of a dome-shaped large-scale coronal extreme-ultraviolet wave. Astrophys. J. Lett. 716, L57. DOI .

    Article  ADS  Google Scholar 

  • Veronig, A.M., Gömöry, P., Kienreich, I.W., Muhr, N., Vršnak, B., Temmer, M., Warren, H.P.: 2011, Plasma diagnostics of an EIT wave observed by Hinode/EIS and SDO/AIA. Astrophys. J. Lett. 743, L10. DOI .

    Article  ADS  Google Scholar 

  • Vršnak, B.: 2001, Solar flares and coronal shock waves. J. Geophys. Res. 106, 25291. DOI .

    Article  ADS  Google Scholar 

  • Vršnak, B.: 2005, Terminology of large-scale waves in the solar atmosphere. Eos Trans. AGU 86, 112. DOI .

    Article  ADS  Google Scholar 

  • Vršnak, B., Cliver, E.W.: 2008, Origin of coronal shock waves. invited review. Solar Phys. 253, 215. DOI .

    Article  ADS  Google Scholar 

  • Vršnak, B., Lulić, S.: 2000a, Formation of coronal MHD shock waves – I. The basic mechanism. Solar Phys. 196, 157. DOI .

    Article  ADS  Google Scholar 

  • Vršnak, B., Lulić, S.: 2000b, Formation of coronal MHD shock waves – II. The pressure pulse mechanism. Solar Phys. 196, 181. DOI .

    Article  ADS  Google Scholar 

  • Vršnak, B., Magdalenić, J., Aurass, H., Mann, G.: 2002a, Band-splitting of coronal and interplanetary type II bursts. II. Coronal magnetic field and Alfvén velocity. Astron. Astrophys. 396, 673. DOI .

    Article  ADS  Google Scholar 

  • Vršnak, B., Warmuth, A., Brajša, R., Hanslmeier, A.: 2002b, Flare waves observed in helium I 10 830 Å. A link between H\(\upalpha\) Moreton and EIT waves. Astron. Astrophys. 394, 299. DOI .

    Article  ADS  Google Scholar 

  • Vršnak, B., Maričić, D., Stanger, A.L., Veronig, A.: 2004, Coronal mass ejection of 15 May 2001: II. Coupling of the CME acceleration and the flare energy release. Solar Phys. 225, 355. DOI .

    Article  ADS  Google Scholar 

  • Vršnak, B., Warmuth, A., Temmer, M., Veronig, A., Magdalenić, J., Hillaris, A., Karlický, M.: 2006, Multi-wavelength study of coronal waves associated with the CME-flare event of 3 November 2003. Astron. Astrophys. 448, 739. DOI .

    Article  ADS  Google Scholar 

  • Wang, H., Shen, C., Lin, J.: 2009, Numerical experiments of wave-like phenomena caused by the disruption of an unstable magnetic configuration. Astrophys. J. 700, 1716. DOI .

    Article  ADS  Google Scholar 

  • Wang, H., Liu, S., Gong, J., Wu, N., Lin, J.: 2015, Contribution of velocity vortices and fast shock reflection and refraction to the formation of EUV waves in solar eruptions. Astrophys. J. 805, 114. DOI .

    Article  ADS  Google Scholar 

  • Warmuth, A.: 2007, Large-scale waves and shocks in the solar corona. In: Klein, K.-L., MacKinnon, A.L. (eds.) The High Energy Solar Corona: Waves, Eruptions, Particles, Lecture Notes in Physics, 725, Springer, Berlin, 107.

    Chapter  Google Scholar 

  • Warmuth, A.: 2010, Large-scale waves in the solar corona: The continuing debate. Adv. Space Res. 45, 527. DOI .

    Article  ADS  Google Scholar 

  • Warmuth, A., Mann, G.: 2011, Kinematical evidence for physically different classes of large-scale coronal EUV waves. Astron. Astrophys. 532, A151. DOI .

    Article  ADS  Google Scholar 

  • Warmuth, A., Vršnak, B., Aurass, H., Hanslmeier, A.: 2001, Evolution of two EIT/H\(\upalpha\) Moreton waves. Astrophys. J. 560, L105. DOI .

    Article  ADS  Google Scholar 

  • Warmuth, A., Vršnak, B., Magdalenić, J., Hanslmeier, A., Otruba, W. 2004a, A multiwavelength study of solar flare waves. I. Observations and basic properties. Astron. Astrophys. 418, 1101. DOI .

    Article  ADS  Google Scholar 

  • Warmuth, A., Vršnak, B., Magdalenić, J., Hanslmeier, A., Otruba, W. 2004b, A multiwavelength study of solar flare waves. II. Perturbation characteristics and physical interpretation. Astron. Astrophys. 418, 1117. DOI .

    Article  ADS  Google Scholar 

  • Wild, J.P., McCready, L.L.: 1950, Observations of the spectrum of high-intensity solar radiation at metre wavelengths. I. The apparatus and spectral types of solar burst observed. Aust. J. Phys. A 3, 387.

    ADS  Google Scholar 

  • Wills-Davey, M.J., Attrill, G.D.R.: 2009, EIT waves: A changing understanding over a solar cycle. Space Sci. Rev. 149, 325. DOI .

    Article  ADS  Google Scholar 

  • Wu, S.T., Wu, C.-C., Liou, K.: 2013, Evidence of the correspondence of EIT waves and coronal mass ejections induced waves using a three-dimensional magnetohydrodynamic simulation. In: Pogorelov, N.V., Audit, E., Zank, G.P. (eds.) Numerical Modeling of Space Plasma Flows, ASTRONUM2012, ASP Conf. Ser. 474, 185.

    Google Scholar 

  • Wu, S.T., Zheng, H., Wang, S., Thompson, B.J., Plunkett, S.P., Zhao, X.P., Dryer, M.: 2001, Three-dimensional numerical simulation of MHD waves observed by the extreme ultraviolet imaging telescope. J. Geophys. Res. 106, 25089. DOI .

    Article  ADS  Google Scholar 

  • Wu, S.T., Li, B., Wang, S., Zheng, H.: 2005, A three-dimensional analysis of global propagation of magnetohydrodynamic (MHD) waves in a structured solar atmosphere. J. Geophys. Res. 110, A11102. DOI .

    Article  ADS  Google Scholar 

  • Xue, Z.K., Qu, Z.Q., Yan, X.L., Zhao, L., Ma, L.: 2013, Deformation and deceleration of coronal wave. Astron. Astrophys. 556, A152. DOI .

    Article  ADS  Google Scholar 

  • Yang, L., Zhang, J., Liu, W., Li, T., Shen, Y.: 2013, SDO/AIA and Hinode/EIS observations of interaction between an EUV wave and active region loops. Astrophys. J. 775, 39. DOI .

    Article  ADS  Google Scholar 

  • Zhukov, A.N.: 2011, EIT wave observations and modeling in the STEREO era. J. Atmos. Solar-Terr. Phys. 73, 1096. DOI .

    Article  ADS  Google Scholar 

  • Žic, T., Vršnak, B., Temmer, M., Jacobs, C.: 2008, Cylindrical and spherical pistons as drivers of MHD shocks. Solar Phys. 253, 73. DOI .

    Google Scholar 

Download references

Acknowledgements

This work has been supported by Croatian Science Foundation under the project 6212 “Solar and Stellar Variability” and the European Commission’s Seventh Framework Programme (FP7/2007-2013) projects under the grant agreement No. 263252 (project COMESEP, www.comesep.eu ) and No. 284461 (project eHEROES, soteria-space.eu/eheroes/html/ ). M.T. and A.M.V. acknowledge the Austrian Science Fund (FWF): FWF V195-N16 and P24092-N16. The Versatile Advection Code (VAC) was developed by Gábor Tóth at the Astronomical Institute at Utrecht. The project is a collaboration with the FOM Institute for Plasma Physics, the Mathematics department at Utrecht and the CWI at Amsterdam. In particular, Rony Keppens (FOM), Mikhail Botchev (Mathematics Dept.), and Auke van der Ploeg (CWI) contributed significantly to the development of the code. G. Tóth and R. Keppens share the responsibility and work associated with the development, maintenance, distribution, and management of the software. We are grateful to Tayeb Aiouaz and Tibor Török for help in getting acquainted with VAC. B.V. and A.M.V. thank ISSI (International Space Science Institute, Bern) for the hospitality provided to the team “The Nature of Coronal Bright Fronts” led by D. Long and S. Bloomfield, where many of the ideas presented in this work have been discussed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Vršnak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vršnak, B., Žic, T., Lulić, S. et al. Formation of Coronal Large-Amplitude Waves and the Chromospheric Response. Sol Phys 291, 89–115 (2016). https://doi.org/10.1007/s11207-015-0822-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0822-9

Keywords

Navigation