Skip to main content
Log in

When Daily Sunspot Births Become Positively Correlated

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We study the first differences \(w(t)\) of the International Sunspot Number (ISSN) daily series for the time span 1850 – 2013. The one-day correlations \(\rho_{1}\) between \(w(t)\) and \(w(t+1)\) are computed within four-year sliding windows and are found to shift from negative to positive values near the end of Cycle 17 (\({\sim}\,1945\)). They remain positive during the last Grand Maximum and until \({\sim}\,2009\), when they fall to zero. We also identify a prominent regime change in \({\sim}\,1915\), strengthening previous evidence of major anomalies in solar activity at this date. We test an autoregressive process of order 1 (AR(1)) as a model that can reproduce the high-frequency component of ISSN: we compute \(\rho_{1}\) for this AR(1) process and find that it is negative. Positive values of \(\rho_{1}\) are found only if the process involves positive correlation: this leads us to suggest that the births of successive spots are positively correlated during the last Grand Maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Barnes, J.A., Sargent, H.H., Tryon, P.V.: 1980, Sunspot cycle simulation using random noise. In: Pepin, R.O., Eddy, J.A., Merrill, R.B. (eds.) The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites, Pergamon, New York, 159.

    Google Scholar 

  • Baumann, I., Solanki, S.K.: 2005, On the size distribution of sunspot groups in the Greenwich sunspot record 1874 – 1976. Astron. Astrophys. 443, 1061. DOI .

    Article  ADS  Google Scholar 

  • Blanter, E.M., Shnirman, M.G., Le Mouël, J.-L.: 2005, Solar variability: evolution of correlation properties. J. Atmos. Solar-Terr. Phys. 67, 521. DOI .

    Article  ADS  Google Scholar 

  • Blanter, E.M., Le Mouël, J.-L., Perrier, F., Shnirman, M.G.: 2006, Short-term correlation of solar activity and sunspot: evidence of lifetime increase. Solar Phys. 237, 329. DOI .

    Article  ADS  Google Scholar 

  • Brajša, R., Wöhl, H., Hanslmeier, A., Verbanac, J., Ruždjak, D., Cliver, E., Svalgaard, L., Roth, M.: 2009, On solar cycle predictions and reconstructions. Astron. Astrophys. 496, 855. DOI .

    Article  ADS  Google Scholar 

  • Charbonneau, P., Dikpati, M.: 2000, Stochastic fluctuations in a Babcock Leighton model of the solar cycle. Astrophys. J. 543, 1027. DOI .

    Article  ADS  Google Scholar 

  • Choudhuri, A.R.: 1992, Stochastic fluctuations of the solar dynamo. Astron. Astrophys. 253, 277. ADS .

    MATH  ADS  Google Scholar 

  • Choudhuri, A.R., Karak, B.B.: 2012, Origin of grand minima in sunspot cycles. Phys. Rev. Lett. 109, 171103. DOI .

    Article  ADS  Google Scholar 

  • Crosson, I.J., Binder, P.M.: 2009, Chaos-based forecast of sunspot cycle 24. Geophys. Res. Lett. 114, A01108. DOI .

    Article  ADS  Google Scholar 

  • Feynman, J., Gabriel, S.B.: 1990, Period and phase of the 88-year solar cycle and the Maunder minimum: evidence for a chaotic Sun. Solar Phys. 127, 399. DOI .

    Article  ADS  Google Scholar 

  • Greenkorn, R.A.: 2009, Analysis of sunspot activity cycles. Solar Phys. 255, 301. DOI .

    Article  ADS  Google Scholar 

  • Hanslmeier, A., Brajša, R.: 2010, The chaotic solar cycle. Astron. Astrophys. 509, A5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Harvey, K.L., Zwaan, C.: 1993, Properties and emergence of bipolar active regions. Solar Phys. 148, 85. DOI .

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 2002, Group sunspot numbers: sunspot cycle characteristics. Solar Phys. 211, 357. DOI .

    Article  ADS  Google Scholar 

  • Henwood, R., Chapman, S.C., Willis, D.M.: 2010, Increasing lifetime of recurrent sunspot groups within the greenwich photoheliographic results. Solar Phys. 262, 299. DOI .

    Article  ADS  Google Scholar 

  • Hiremath, K.M.: 2008, Prediction of solar cycle 24 and beyond. Astrophys. Space Sci. 314, 45. DOI . ADS .

    Article  ADS  Google Scholar 

  • Javaraiah, J.: 2012, Solar cycle variations in the growth and decay of sunspot groups. Astrophys. Space Sci. 338, 217. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lawrence, J.K., Cadavid, A.C., Ruzmaikin, A.A.: 1995, Turbulent and chaotic dynamics underlying solar magnetic variability. Astron. Astrophys. 455, 366. DOI . ADS .

    ADS  Google Scholar 

  • Lawrence, J.K., Cadavid, A.C., Ruzmaikin, A.A.: 2008, Rotational quasi-periodicities and the Sun-heliosphere connection. Solar Phys. 252, 179. DOI .

    Article  ADS  Google Scholar 

  • Le Mouël, J.-L., Shnirman, M.G., Blanter, E.M.: 2007, The 27-day signal in sunspot number series and the solar dynamo. Solar Phys. 246, 295. DOI . ADS .

    Article  ADS  Google Scholar 

  • Love, J.J., Joshua Rigler, E.: 2012, Sunspot random walk and 22-year variation. Geophys. Res. Lett. 39, L10103. DOI . ADS .

    ADS  Google Scholar 

  • Love, J.J., Joshua Rigler, E., Gibson, S.E.: 2012, Geomagnetic detection of the sectorial solar magnetic field and the historical peculiarity of minimum 23–24. Geophys. Res. Lett. 39, 322. DOI . ADS .

    Google Scholar 

  • Ostryakov, V.N., Usoskin, I.G.: 1990, On the dimension of solar attractor. Solar Phys. 127, 405. DOI . ADS .

    Article  ADS  Google Scholar 

  • Petrovay, K., Martínez Pillet, V., van Driel-Gesztelyi, L.: 1999, Making sense of sunspot decay – II. Deviations from the mean law and plage effects. Solar Phys. 188, 315. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pop, M.-I.: 2012, Distribution of the daily sunspot number variation for the last 14 solar cycles. Solar Phys. 276, 351. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ruzmaikin, A., Feynman, J., Kosacheva, V.: 1992, On long-term dynamics of the solar cycle. In: Harvey, K.L. (ed.) The Solar Cycle; Proc. National Solar Observatory/Sacramento Peak 12th Summer Workshop, ASP Conf. Ser., San Francisco, 27, 547.

    Google Scholar 

  • Sello, S.: 2001, Solar cycle forecasting: a nonlinear dynamics approach. Astron. Astrophys. 377, 312. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shapoval, A., Courtillot, V., Le Mouël, J.-L., Shnirman, M.G.: 2013, Two regimes in the regularity of sunspot number. Astrophys. J. 779, 108. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shapoval, A., Le Mouël, J.-L., Shnirman, M.G., Courtillot, V.: 2014a, Can irregularities of solar proxies help understand quasi-biennial solar variations? Nonlinear Process. Geophys. 21, 797. DOI .

    Article  ADS  Google Scholar 

  • Shapoval, A., Le Mouël, J.-L., Courtillot, V., Shnirman, M.G.: 2014b, Is a sudden increase of irregularity of sunspot numbers a precursor of a return to low solar activity? J. Geophys. Res. 119, 6120. DOI . ADS .

    Article  Google Scholar 

  • Shapoval, A., Le Mouël, J.-L., Shnirman, M.G., Courtillot, V.: 2015, Stochastic description of the high-frequency content of daily sunspots and evidence for regime changes. Astrophys. J. 799, 56. DOI . ADS .

    Article  ADS  Google Scholar 

  • Spiegel, E.A., Wolf, A.: 1987, Chaos and the solar cycle. In: Buchler, J.R., Eichhorn, H. (eds.) Chaotic Phenomena in Astrophysics 497, N.Y. Acad. Sci., New York, 55.

    Google Scholar 

  • Suyal, V., Prasad, A., Singh, H.P.: 2009, Nonlinear time series analysis of sunspot data. Solar Phys. 260, 441. DOI .

    Article  ADS  Google Scholar 

  • Usoskin, I.G., Solanki, S.K., Kovaltsov, G.A.: 2007, Grand minima and maxima of solar activity: new observational constraint. Astron. Astrophys. 471, 301. DOI .

    Article  ADS  Google Scholar 

  • Van der Linden, R.A.M., SIDC team: 2014, Online catalogue of the sunspot index. http://sidc.oma.be/html/sunspot.html .

  • Xu, T., Wu, J., Wu, Z.-S., Li, Q.: 2008, Long-term sunspot number prediction based on EMD analysis and AR model. Chin. J. Astron. Astrophys. 8, 337. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The daily ISSN are reported by Van der Linden and SIDC team (2014), http://sidc.oma.be/html/sunspot.html . IPGP provided support to A. Shapoval and M. Shnirman during their visit to the institute. A. Shapoval was partially supported by RFBR grants 14-01-00346 and 14-01-00773. IPGP contribution NS 3689.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Shapoval.

Appendix: Analytical computation of correlations

Appendix: Analytical computation of correlations

For the common AR(1) process defined by Equation (2) without modulation, when the random variables \(\eta_{k}\) have a finite variance \(\mathbf{Var}(\eta_{k})=\sigma_{k}^{2}\), the auto-correlation can be calculated analytically. We set \(g(t)=G(t+1)-G(t)\). The covariance is

$$\begin{aligned} \mathbf{Cov} \bigl(g(1),g(0) \bigr) =& \lim_{l\to\infty} \mathbf{Cov} \Biggl(-(1-a)a^{l+1}G(-l) \\ &{}-(1-a)\sum_{k=-1}^{l} a^{k+1} \eta_{-k} +\eta_{2}, -(1-a)a^{l}G(-l) \\ &{}-(1-a)\sum_{k=0}^{l}a^{k} \eta_{-k}+\eta_{1} \Biggr). \end{aligned}$$
(5)

If the random variables \(\eta\) are independent, the terms \(\mathbf{Cov}(\eta_{i},\eta_{j})\) disappear for \(i\ne j\), and Equation (5) is simplified into

$$ \mathbf{Cov} \bigl(g(1),g(0) \bigr)= (1-a)^{2}\sum _{k=0}^{\infty}\sigma_{-k}^{2}a^{2k+1}-(1-a) \sigma_{1}^{2}. $$
(6)

If \(\sigma_{k}=\sigma\) for all \(k\), then

$$ \mathbf{Cov} \bigl(g(1),g(0) \bigr)= -\frac{(1-a)}{1+a} \sigma^{2}. $$
(7)

Since the variance of the one-step differences is equal to

$$\mathbf{Var}\bigl(g(1)\bigr)=\mathbf{Var}\bigl(g(0)\bigr)= (1-a)^{2} \mathbf{Cov} \Biggl(\sum_{k=0}^{\infty}a^{k} \eta_{-k},\sum_{k=0}^{\infty}a^{k} \eta_{-k} \Biggr)+ \mathbf{Var}(\eta_{1})=\frac{2}{1+a} \sigma^{2}, $$

the correlation \(\rho_{1}\) between the daily differences is

$$ \rho_{1}=\rho \bigl(g(1),g(0) \bigr)=- \frac{1-a}{2}. $$
(8)

From Equation (8) it follows that the one-day auto-correlation of the AR(1)-process is negative and goes to zero as the auto-correlation factor \(a\) tends to 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapoval, A., Le Mouël, JL., Shnirman, M. et al. When Daily Sunspot Births Become Positively Correlated. Sol Phys 290, 2709–2717 (2015). https://doi.org/10.1007/s11207-015-0778-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0778-9

Keywords

Navigation