Skip to main content
Log in

Mid-Term Quasi-Periodicities and Solar Cycle Variation of the White-Light Corona from 18.5 Years (1996.0 – 2014.5) of LASCO Observations

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We report on the analysis of the temporal evolution of the solar corona based on 18.5 years (1996.0 – 2014.5) of white-light observations with the SOHO/LASCO-C2 coronagraph. This evolution is quantified by generating spatially integrated values of the K-corona radiance, first globally, then in latitudinal sectors. The analysis considers time series of monthly values and 13-month running means of the radiance as well as several indices and proxies of solar activity. We study correlation, wavelet time-frequency spectra, and cross-coherence and phase spectra between these quantities. Our results give a detailed insight on how the corona responds to solar activity over timescales ranging from mid-term quasi-periodicities (also known as quasi-biennial oscillations or QBOs) to the long-term 11 year solar cycle. The amplitude of the variation between successive solar maxima and minima (modulation factor) very much depends upon the strength of the cycle and upon the heliographic latitude. An asymmetry is observed during the ascending phase of Solar Cycle 24, prominently in the royal and polar sectors, with north leading. Most prominent QBOs are a quasi-annual period during the maximum phase of Solar Cycle 23 and a shorter period, seven to eight months, in the ascending and maximum phases of Solar Cycle 24. They share the same properties as the solar QBOs: variable periodicity, intermittency, asymmetric development in the northern and southern solar hemispheres, and largest amplitudes during the maximum phase of solar cycles. The strongest correlation of the temporal variations of the coronal radiance – and consequently the coronal electron density – is found with the total magnetic flux. Considering that the morphology of the solar corona is also directly controlled by the topology of the magnetic field, this correlation reinforces the view that they are intimately connected, including their variability at all timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Abbott, W.N.: 1955, Variation of the absolute surface brightness in the corona with the solar cycle. Ann. Astrophys. 18, 81. ADS .

    ADS  Google Scholar 

  • Allen, C.W.: 1973, Astrophysical Quantities, 3rd edn. Athlone Press, London, 176. ADS .

    Google Scholar 

  • Altrock, R.C.: 2013, Forecasting the maxima of solar cycle 24 with coronal Fe xiv emission. Solar Phys. 289, 623. DOI .

    Article  ADS  Google Scholar 

  • Ball, W.T., Unruh, Y.C., Krivova, N.A., Solanki, S., Wenzler, T., Mortlock, D.J., Jaffe, A.H.: 2012, Reconstruction of total solar irradiance 1974 – 2009. Astron. Astrophys. 541, A27. DOI .

    Article  ADS  Google Scholar 

  • Basu, S., Broomhall, A.M., Chaplin, W.J., Elsworth, Y.: 2012, Thinning of the Sun’s magnetic layer: The peculiar solar minimum could have been predicted. Astrophys. J. 758, 43. DOI .

    Article  ADS  Google Scholar 

  • Bazilevskaya, G.A., Broomhall, A.-M., Elsworth, Y., Nakariakov, V.M.: 2014, A combined analysis of the observational aspects of the quasi-biennial oscillation in solar magnetic activity. Space Sci. Rev. 186, 359. DOI .

    Article  ADS  Google Scholar 

  • Benevolenskaya, E.E.: 1998, A model of the double magnetic cycle of the Sun. Astrophys. J. 509, L49. DOI .

    Article  ADS  Google Scholar 

  • Benevolenskaya, E.E., Kostuchenko, I.G.: 2013, The total solar irradiance, UV emission and magnetic flux during the last solar cycle minimum. J. Astrophys. 2013, 368380. ADS .

    Article  Google Scholar 

  • Benevolenskaya, E.E., Slater, G., Lemen, J.: 2003, Impulses of activity and the solar cycle. Solar Phys. 216, 325. DOI .

    Article  ADS  Google Scholar 

  • Benevolenskaya, E.E., Slater, G., Lemen, J.: 2014, Synoptic solar cycle 24 in corona, chromosphere, and photosphere seen by the solar dynamics observatory. Solar Phys. 289, 3371. DOI .

    Article  ADS  Google Scholar 

  • Bisoi, S.K., Janardhan, P., Chakrabarty, D., Ananthakrishnan, S., Divekar, A.: 2014, Changes in quasi-periodic variations of solar photospheric fields: Precursor to the deep solar minimum in cycle 23? Solar Phys. 289, 41. DOI .

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI .

    Article  ADS  Google Scholar 

  • Chowdhury, P.: 2011, Periodic behavior of solar electron flares during descending phase of cycle 23. Proc. 32nd Int. Cosmic Ray Conf. 10, 132. DOI .

    Google Scholar 

  • Chowdhury, P., Dwivedi, B.N.: 2011, Periodicities of sunspot number and coronal index time series during solar cycle 23. Solar Phys. 270, 365. DOI .

    Article  ADS  Google Scholar 

  • Dikpati, M.: 2011, Comparison of the past two solar minima from the perspective of the interior dynamics and dynamo of the Sun. Space Sci. Rev. 176, 279. DOI .

    Article  ADS  Google Scholar 

  • Dikpati, M., Gilman, P.A., de Toma, G., Ulrich, R.K.: 2010, Impact of changes in the Sun’s conveyor-belt on recent solar cycles. Geophys. Res. Lett. 37, 14107. DOI .

    ADS  Google Scholar 

  • Fisher, R., Sime, D.G.: 1984, Solar activity cycle variation of the K corona. Astrophys. J. 285, 354. DOI .

    Article  ADS  Google Scholar 

  • Frick, P., Galyagin, D., Hoyt, D.V., Nesme-Ribes, E., Schatten, K.H., Sokoloff, D., Zakharov, V.: 1997, Wavelet analysis of solar activity recorded by sunspot groups. Astron. Astrophys. 328, 670. ADS .

    ADS  Google Scholar 

  • Fröhlich, C.: 2013, Total solar irradiance: What have we learned from the last three cycles and the recent minimum? Space Sci. Rev. 176, 237. DOI .

    Article  ADS  Google Scholar 

  • Gardès, B., Lamy, P., Llebaria, A.: 2013, Photometric calibration of the LASCO-C2 coronagraph over 14 years (1996 – 2009). Solar Phys. 283, 667. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Mäkelä, P., Michalek, G., Shibasaki, K., Hathaway, D.H.: 2012, Behavior of solar cycles 23 and 24 revealed by microwave observations [Erratum: doi:10.1088/2041-8205/763/1/L24]. Astrophys. J. Lett. 750, L42. DOI .

    Article  ADS  Google Scholar 

  • Grinsted, A., Moore, J.C., Jevrejeva, S.: 2004, Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Proc. Geophys. 11, 561.

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: 2010, The solar cycle. Living Rev. Solar Phys. 7(1). DOI .

  • Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R.W., Larsen, R.M., Schou, J., Thompson, M.J., Toomre, J.: 2000, Dynamic variations at the base of the solar convection zone. Science 287, 2456. DOI .

    Article  ADS  Google Scholar 

  • Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R., Schou, J., Thompson, M.J., Toomre, J.: 2007, Temporal variations in the solar rotation at the bottom of the convection zone: The current status. Adv. Space Res. 40, 915. DOI .

    Article  ADS  Google Scholar 

  • Kilcik, A., Ozguc, A., Yurchyshyn, V., Rozelot, J.P.: 2014, Sunspot count periodicities in different Zurich sunspot group classes since 1986. Solar Phys. 289, 4365. DOI .

    Article  ADS  Google Scholar 

  • Krivodubskij, V.N.: 2005, Turbulent dynamo near tachocline and reconstruction of azimuthal magnetic field in the solar convective zone. Astron. Nachr. 326, 61. DOI .

    Article  ADS  Google Scholar 

  • Krivova, N.A., Solanki, S.K.: 2002, The 1.3-year and 156-day periodicities in sunspot data: Wavelet analysis suggests a common origin. Astron. Astrophys. 394, 701. DOI .

    Article  ADS  Google Scholar 

  • Krivova, N.A., Solanki, S.K., Fligge, M., Unruh, Y.C.: 2003, Reconstruction of solar irradiance variations in cycle 23: Is solar surface magnetism the cause? Astron. Astrophys. 399, L1. DOI .

    Article  ADS  Google Scholar 

  • Lamy, P., Llebaria, A., Quémerais, E.: 2002, Solar cycle variation of the radiance and the global electron density of the solar corona. Adv. Space Res. 29, 373. DOI .

    Article  ADS  Google Scholar 

  • Lamy, P., Barlyaeva, T., Llebaria, A., Floyd, O.: 2014, Comparing the solar minima of cycles 22/23 and 23/24: The view from LASCO white-light coronal images. J. Geophys. Res. 119, 47. DOI .

    Article  Google Scholar 

  • Lean, J.: 1990, Evolution of the 155 day periodicity in sunspot areas during solar cycles 12 to 21. Astrophys. J. 363, 718. DOI .

    Article  ADS  Google Scholar 

  • Lean, J.L., Brueckner, G.E.: 1989, Intermediate-term solar periodicities: 100 – 500 days. Astrophys. J. 337, 568. DOI .

    Article  ADS  Google Scholar 

  • Lebecq, C., Koutchmy, S., Stellemacher, G.: 1985, The 1981 total solar eclipse corona. II. Global absolute photometric analysis. Astron. Astrophys. 152, 157. ADS .

    ADS  Google Scholar 

  • Llebaria, A., Lamy, P.: 2008, In-orbit calibration of the polarization flat fields of the SOHO-LASCO coronagraphs. In: Oschmann, J.M. Jr., de Graauw, M.W.M., MacEwen, H.A. (eds.) Space Telescopes and Instrumentation 2008: Optical, Infrared, and Millimeter, Proc. SPIE 7010, 70101I. DOI .

    Chapter  Google Scholar 

  • Llebaria, A., Lamy, P., Bout, M.V.: 2004, Lessons learned from the SOHO/LASCO-C2 calibration. In: Fineschi, S., Grumman, M.A. (eds.) Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 5171, 26. DOI .

    Chapter  Google Scholar 

  • Llebaria, A., Lamy, P., Danjard, J.-F.: 2006, Photometric calibration of the LASCO-C2 coronagraph for solar system objects. Icarus 182, 281. DOI .

    Article  ADS  Google Scholar 

  • Llebaria, A., Lamy, P., Koutchmy, S.: 1999, The global activity of the solar corona. In: Vial, J.-C., Kaldeich-Schümann, B. (eds.) Proc. 8th SOHO Workshop, Plasma Dynamics and Diagnostics in the Solar Transition Region and Corona, ESA SP-466, 441. ADS .

    Google Scholar 

  • Llebaria, A., Loirat, J., Lamy, P.: 2010, Restitution of multiple overlaid components on extremely long series of solar corona images. In: Bouman, C.A., Pollak, I., Wolfe, P.J. (eds.) Computational Imaging VIII, Proc. SPIE 7533, 75330I. DOI .

    Chapter  Google Scholar 

  • Llebaria, A., Thernisien, A.F.R.: 2001, Highly accurate photometric equalization of long sequences of coronal images. In: Starck, J.-L., Murtagh, F.D. (eds.) Astronomical Data Analysis, Proc. SPIE 4477, 265. DOI .

    Chapter  Google Scholar 

  • Lou, Y.-Q.: 2000, Rossby-type wave-induced periodicities in flare activities and sunspot areas or groups during solar maxima. Astrophys. J. 540, 1102. DOI .

    Article  ADS  Google Scholar 

  • Maraun, D., Kurths, J.: 2004, Cross wavelet analysis: Significance testing and pitfalls. Nonlinear Proc. Geophys. 11, 505. DOI .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Leamon, R.J., Gurman, J.B., Olive, J.-P., Cirtain, J.W., Hathaway, D.H., Burkepile, J., Miesch, M., Markel, R.S., Sitongia, L.: 2013, Hemispheric assymmetries of solar photospheric magnetism: Radiative, particulate, and heliospheric impacts. Astrophys. J. 765, 146. DOI .

    Article  ADS  Google Scholar 

  • Mendoza, B., Velasco, V.M., Valdés-Galicia, J.F.: 2006, Mid-term periodicities in the solar magnetic flux. Solar Phys. 233, 319. DOI .

    Article  ADS  Google Scholar 

  • Nair, V.S., Nayar, S.R.P.: 2008, North–South asymmetry in solar wind & geomagnetic activity and its solar cycle evolution. Indian J. Radio Space Phys. 37, 391.

    Google Scholar 

  • Nikonov, V.B., Nikonova, E.K.: 1947, Izv. Krym. Astrofyz. Obs. 1, 83.

    Google Scholar 

  • Oliver, R., Ballester, J.L.: 1996, Rescaled range analysis of the asymmetry of solar activity. Solar Phys. 169, 215. DOI .

    Article  ADS  Google Scholar 

  • Oliver, R., Ballester, J.L., Baudin, F.: 1998, Emergence of magnetic flux on the Sun as the cause of a 158-day periodicity in sunspot areas. Nature 394, 552. DOI .

    Article  ADS  Google Scholar 

  • Ostryakov, V.M., Usoskin, I.G.: 1990, Correlation dimensions of structured signals. Sov. Tech. Phys. Lett. 16, 658.

    Google Scholar 

  • Pagot, E., Lamy, P., Llebaria, A., Boclet, B.: 2013, Automated processing of LASCO coronal images: Spurious point-source filtering and missing blocks correction. Solar Phys. 289, 1433. DOI .

    Article  ADS  Google Scholar 

  • Petrie, G.J.D.: 2012, Evolution of active and polar photospheric magnetic fields during the rise of cycle 24 compared to previous cycles. Solar Phys. 281, 577. DOI .

    Article  ADS  Google Scholar 

  • Rieger, E., Share, G.H., Forrest, D.J., Kanbach, G., Reppin, C., Chupp, E.L.: 1984, A 154-day periodicity in the occurrence of hard solar flares? Nature 312, 623. DOI .

    Article  ADS  Google Scholar 

  • Saito, K.: 1950, Brightness and polarization of the solar corona. Ann. Tokyo Astron. Obs., 2nd Ser., 3, 3. ADS .

    Google Scholar 

  • Sturrock, P.A., Scargle, J.D., Walther, G., Wheatland, M.S.: 1999, Rotational signature and possible r-mode signature in the GALLEX solar neutrino data. Astrophys. J. Lett. 523, L177. DOI .

    Article  ADS  Google Scholar 

  • Sytinskaya, N.N., Sharonov, V.V.: 1983, In: Evans, J. (ed.) The Solar Corona, Academic Press, New York, 301.

    Google Scholar 

  • Tappin, S.J., Altrock, R.C.: 2013, The extended solar cycle tracked high into the corona. Solar Phys. 282, 249. DOI .

    Article  ADS  Google Scholar 

  • Tapping, K.F.: 2006, Solar activity indices. In: Murdin, P. (ed.) Encyclopedia of Astronomy & Astrophysics. http://eaa.crcpress.com .

    Google Scholar 

  • Tapping, K.F., Boteler, D., Charbonneau, P., Crouch, A., Manson, A., Paquette, H.: 2007, Total magnetic activity and total irradiance since the Maunder minimum. Solar Phys. 246, 309. DOI .

    Article  ADS  Google Scholar 

  • Telloni, D., Ventura, R., Romano, P., Spadaro, D., Antonucci, E.: 2013, Detection of plasma fluctuations in white-light images of the outer solar corona: Investigation of the spatial and temporal evolution. Astrophys. J. 767, 138. DOI .

    Article  ADS  Google Scholar 

  • Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61. ADS .

    Article  ADS  Google Scholar 

  • Usoskin, I.G.: 2013, A history of solar activity over millennia. Living Rev. Solar Phys. 10(1). DOI .

  • van de Hulst, H.C.: 1950, The electron density of the solar corona. Bull. Astron. Inst. Neth. 11, 135. ADS .

    ADS  Google Scholar 

  • Waldmeier, M.: 1955, Ergebnisse der Zürcher sonnenfinsternisexpedition 1954. I. Vorläufige photometrie der korona. Z. Astrophys. 36, 275. ADS .

    ADS  Google Scholar 

  • Wang, Y.-M., Robbrecht, E., Sheeley, N.R. Jr.: 2009, On the weakening of the polar magnetic fields during solar cycle 23. Astrophys. J. 707, 1372. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 2003, On the fluctuating component of the Sun large-scale magnetic field. Astrophys. J. 590, 1111. DOI .

    Article  ADS  Google Scholar 

  • Wolff, C.L.: 1983, The rotational spectrum of g-modes in the Sun. Astrophys. J. 264, 667. DOI .

    Article  ADS  Google Scholar 

  • Zolotova, N.V., Ponyavin, D.I., Arlt, R., Tuominen, I.: 2010, Secular variation of hemispheric phase differences in the solar cycle. Astron. Nachr. 331, 765. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Fröhlich and Y.-M. Wang for providing the TSI and TMF time-series data, respectively, that we used in our analysis. We thank N. Krivova, A.S. Brun, and T. Dudok de Wit for enlightening discussions. The LASCO-C2 project at the Laboratoire d’Astrophysique de Marseille is funded by the Centre National d’Etudes Spatiales (CNES). LASCO was built by a consortium of the Naval Research Laboratory, USA, the Laboratoire d’Astrophysique de Marseille (formerly Laboratoire d’Astronomie Spatiale), France, the Max-Planck-Institut für Sonnensystemforschung (formerly Max Planck Institute für Aeronomie), Germany, and the School of Physics and Astronomy, University of Birmingham, UK. SOHO is a project of international cooperation between ESA and NASA. We would like to thank the anonymous Reviewer for suggesting an interpretation of the differences between the temporal variations of the radiance of the K-corona in the equator and other sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Barlyaeva.

Appendix: LASCO-C2 Data Preprocessing

Appendix: LASCO-C2 Data Preprocessing

The routine observational program is basically composed of unpolarized white-light images of \(1024\times1024~\mbox{pixels}\) every 20 min and a daily polarization sequence all taken with an orange filter (bandpass of 540 – 640 nm); in addition, there have been specific campaigns usually coordinated with other SOHO instruments.

The present analysis makes use of these polarization sequences since their temporal cadence is sufficient for our purpose and since they allow extracting the K-corona following a classical procedure to be described below. A polarization sequence is composed of three linear polarized images of the corona obtained with three polarizers oriented at \(60^{\circ}\), \(0^{\circ}\), and \(-60^{\circ}\) and an unpolarized image, all taken with the orange filter in the binned format of \(512\times512~\mbox{pixels}\).

All LASCO images, either polarized or unpolarized, undergo a standard preprocessing that corrects for instrumental effects. The in-flight performances of C2 are continuously monitored so as to update these corrections and the absolute calibration. Our analysis also benefits from recent improvements introduced in the procedures. The preprocessing performs the following tasks:

  1. 1.

    Bias correction. The bias level of the CCD detector evolves with time; it is continuously monitored using specific blind zones, and is systematically subtracted from the images.

  2. 2.

    Exposure-time equalization. Small random errors in the exposure times are corrected using a method developed by Llebaria and Thernisien (2001) and refined by Llebaria, Loirat, and Lamy (2010) in which relative and absolute correction factors are determined.

  3. 3.

    Missing-block correction. Telemetry losses result in blocks of \(32 \times32~\mbox{pixels}\) sometime missing in the images. Different solutions are implemented to restore the missing signal depending upon the location of these blocks (Pagot et al., 2013).

  4. 4.

    Cosmic-ray correction. The impact of cosmic rays (and stars) is eliminated from the images using the procedure of opening by morphological reconstruction developed by Pagot et al. (2013).

The polarized images also undergo the following processes:

  1. 1.

    Correction for the global transmission of the polarizers.

  2. 2.

    Correction for the spatial variation of the transmission of the polarizers (Llebaria and Lamy, 2008).

  3. 3.

    Correction for the circular polarization introduced by the two folding mirrors.

  4. 4.

    Polarimetric analysis based on the Mueller procedure. This is applied to each triplet of polarized images and returns images of the total radiance, the polarization, and the angle of polarization.

  5. 5.

    Vignetting correction. This instrumental effect is removed from the radiance images using a geometric model of the two-dimensional vignetting function of C2 (Llebaria, Lamy, and Bout, 2004).

  6. 6.

    Absolute calibration of the total radiance derived from the photometric measurements of thousands of observations of stars present in the C2 field of view (Llebaria, Lamy, and Danjard, 2006; Gardès, Lamy, and Llebaria, 2013).

At this stage, the images represent the sum of the radiances of the K and F coronae and of the instrumental stray light. The separation of the K component is performed on the basis of the classical assumptions that the F corona and the stray light are unpolarized based upon the fact that both mostly result from diffraction effects. This is indeed a valid assumption for the F corona inside \(6.5~R_{\odot}\). Using these assumptions, the polarized radiance \(pB\) is equal to \({p}_{\mathrm{K}}{B}_{\mathrm{K}}\). At this point, we use a model of \(\mathrm{p}_{\mathrm{K}}\) calculated for a standard spherical corona (Allen, 1973), which is justified by the robust asymptotic behavior of \({p}_{\mathrm{K}}\) beyond \(2.2~R_{\odot}\). The radiance maps of the K corona can then be derived.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barlyaeva, T., Lamy, P. & Llebaria, A. Mid-Term Quasi-Periodicities and Solar Cycle Variation of the White-Light Corona from 18.5 Years (1996.0 – 2014.5) of LASCO Observations. Sol Phys 290, 2117–2142 (2015). https://doi.org/10.1007/s11207-015-0736-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0736-6

Keywords

Navigation