Skip to main content
Log in

Coronal Mass Ejections from the Same Active Region Cluster: Two Different Perspectives

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The cluster formed by active regions (ARs) NOAA 11121 and 11123, approximately located on the solar central meridian on 11 November 2010, is of great scientific interest. This complex was the site of violent flux emergence and the source of a series of Earth-directed events on the same day. The onset of the events was nearly simultaneously observed by the Atmospheric Imaging Assembly (AIA) telescope onboard the Solar Dynamics Observatory (SDO) and the Extreme-Ultraviolet Imagers (EUVI) on the Sun-Earth Connection Coronal and Heliospheric Investigation (SECCHI) suite of telescopes onboard the Solar-Terrestrial Relations Observatory (STEREO) twin spacecraft. The progression of these events in the low corona was tracked by the Large Angle Spectroscopic Coronagraphs (LASCO) onboard the Solar and Heliospheric Observatory (SOHO) and the SECCHI/COR coronagraphs on STEREO. SDO and SOHO imagers provided data from the Earth’s perspective, whilst the STEREO twin instruments procured images from the orthogonal directions. This spatial configuration of spacecraft allowed optimum simultaneous observations of the AR cluster and the coronal mass ejections that originated in it. Quadrature coronal observations provided by STEREO revealed many more ejective events than were detected from Earth. Furthermore, joint observations by SDO/AIA and STEREO/SECCHI EUVI of the source region indicate that all events classified by GOES as X-ray flares had an ejective coronal counterpart in quadrature observations. These results directly affect current space weather forecasting because alarms might be missed when there is a lack of solar observations in a view direction perpendicular to the Sun-Earth line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Alfvén, H.: 1956, The Sun’s general magnetic field. Tellus 8, 1.

    Article  ADS  Google Scholar 

  • Andrews, M.D.: 2002, The front-to-back asymmetry of coronal emission. Solar Phys. 208, 317. DOI .

    Article  ADS  Google Scholar 

  • Boursier, Y., Lamy, P., Llebaria, A., Goudail, F., Robelus, S.: 2009, The ARTEMIS catalog of LASCO coronal mass ejections. Automatic Recognition of Transient Events and Marseille Inventory from Synoptic maps. Solar Phys. 257, 125. DOI .

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI .

    Article  ADS  Google Scholar 

  • Byrne, J.P., Morgan, H., Habbal, S.R., Gallagher, P.T.: 2012, Automatic detection and tracking of coronal mass ejections. II. Multiscale filtering of coronagraph images. Astrophys. J. 752, 145. DOI .

    Article  ADS  Google Scholar 

  • Carrington, R.C.: 1859, Description of a singular appearance seen in the Sun on September 1, 1859. Mon. Not. Roy. Astron. Soc. 20, 13.

    Article  ADS  Google Scholar 

  • Cremades, H., Bothmer, V.: 2004, On the three-dimensional configuration of coronal mass ejections. Astron. Astrophys. 422, 307. DOI .

    Article  ADS  Google Scholar 

  • Cremades, H., Bothmer, V.: 2005, Geometrical properties of coronal mass ejections. In: Dere, K., Wang, J., Yan, Y. (eds.) Coronal and Stellar Mass Ejections, IAU Symp. 226, 48. DOI .

    Google Scholar 

  • Crifo, F., Picat, J.P., Cailloux, M.: 1983, Coronal transients – Loop or bubble. Solar Phys. 83, 143. DOI .

    Article  ADS  Google Scholar 

  • Démoulin, P., Hénoux, J.C., Priest, E.R., Mandrini, C.H.: 1996, Quasi-separatrix layers in solar flares. I. Method. Astron. Astrophys. 308, 643. ADS .

    ADS  Google Scholar 

  • Dere, K.P., Brueckner, G.E., Howard, R.A., Michels, D.J., Delaboudiniere, J.P.: 1999, LASCO and EIT observations of helical structure in coronal mass ejections. Astrophys. J. 516, 465. DOI .

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: An overview. Solar Phys. 162, 1. DOI .

    Article  ADS  Google Scholar 

  • Gibson, S.E., Low, B.C.: 2000, Three-dimensional and twisted: An MHD interpretation of on-disk observational characteristics of coronal mass ejections. J. Geophys. Res. 105, 18187. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Davila, J.M., St. Cyr, O.C., Sittler, E.C., Auchère, F., Duvall, T.L., Hoeksema, J.T., Maksimovic, M., MacDowall, R.J., Szabo, A., Collier, M.R.: 2011, Earth-Affecting Solar Causes Observatory (EASCO): A potential international living with a star mission from Sun–Earth L5. J. Atmos. Solar-Terr. Phys. 73, 658. DOI . http://esoads.eso.org/abs/2011JASTP..73..658G .

    Article  ADS  Google Scholar 

  • Gosling, J.T.: 1993, Coronal mass ejections – The link between solar and geomagnetic activity. Phys. Fluids B 5, 2638. DOI .

    Article  ADS  Google Scholar 

  • Gosling, J.T., Hildner, E., MacQueen, R.M., Munro, R.H., Poland, A.I., Ross, C.L.: 1974, Mass ejections from the sun – A view from SKYLAB. J. Geophys. Res. 79, 4581. DOI . http://esoads.eso.org/abs/1974JGR....79.4581G .

    Article  ADS  Google Scholar 

  • Howard, R.A., Michels, D.J., Sheeley, N.R. Jr., Koomen, M.J.: 1982, The observation of a coronal transient directed at earth. Astrophys. J. Lett. 263, L101. DOI .

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI .

    Article  ADS  Google Scholar 

  • Howard, T.A., DeForest, C.E.: 2012, The Thomson surface. I. Reality and myth. Astrophys. J. 752, 130. DOI . ADS .

    Article  ADS  Google Scholar 

  • Howard, T.A., Harrison, R.A.: 2013, Stealth coronal mass ejections: A perspective. Solar Phys. 285, 269. DOI .

    Article  ADS  Google Scholar 

  • Howard, T.A., Nandy, D., Koepke, A.C.: 2008, Kinematic properties of solar coronal mass ejections: Correction for projection effects in spacecraft coronagraph measurements. J. Geophys. Res. 113, 1104. DOI . ADS .

    Article  Google Scholar 

  • Huang, Z., Madjarska, M.S., Koleva, K., Doyle, J.G., Duchlev, P., Dechev, M., Reardon, K.: 2014, \(\mbox{H}{\upalpha}\) spectroscopy and multiwavelength imaging of a solar flare caused by filament eruption. Astron. Astrophys. 566, A148. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hundhausen, A.J.: 1993, Sizes and locations of coronal mass ejections – SMM observations from 1980 and 1984 – 1989. J. Geophys. Res. 98, 13177. DOI .

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5. DOI .

    Article  ADS  Google Scholar 

  • Kilpua, E.K.J., Mierla, M., Zhukov, A.N., Rodriguez, L., Vourlidas, A., Wood, B.: 2014, Solar sources of interplanetary coronal mass ejections during the Solar Cycle 23/24 minimum. Solar Phys. 289, 3773. DOI . http://esoads.eso.org/abs/2014SoPh..289.3773K .

    Article  ADS  Google Scholar 

  • Lara, A., Gopalswamy, N., Xie, H., Mendoza-Torres, E., Pérez-Eríquez, R., Michalek, G.: 2006, Are halo coronal mass ejections special events? J. Geophys. Res. 111, 6107. DOI .

    Article  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI .

    Article  ADS  Google Scholar 

  • Lindemann, F.A.: 1919, Note on the theory of magnetic storms. Phil. Mag. 38, 669.

    Article  Google Scholar 

  • Lugaz, N., Hernandez-Charpak, J.N., Roussev, I.I., Davis, C.J., Vourlidas, A., Davies, J.A.: 2010, Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with STEREO SECCHI. Astrophys. J. 715, 493. DOI .

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Schmieder, B., Démoulin, P., Guo, Y., Cristiani, G.D.: 2014, Topological analysis of emerging bipole clusters producing violent solar events. Solar Phys. 289, 2041. DOI . ADS .

    Article  ADS  Google Scholar 

  • Michałek, G., Gopalswamy, N., Yashiro, S.: 2003, A new method for estimating widths, velocities, and source location of halo coronal mass ejections. Astrophys. J. 584, 472. DOI .

    Article  ADS  Google Scholar 

  • Mierla, M., Inhester, B., Antunes, A., Boursier, Y., Byrne, J.P., Colaninno, R., Davila, J., de Koning, C.A., Gallagher, P.T., Gissot, S., Howard, R.A., Howard, T.A., Kramar, M., Lamy, P., Liewer, P.C., Maloney, S., Marqué, C., McAteer, R.T.J., Moran, T., Rodriguez, L., Srivastava, N., St. Cyr, O.C., Stenborg, G., Temmer, M., Thernisien, A., Vourlidas, A., West, M.J., Wood, B.E., Zhukov, A.N.: 2010, On the 3-D reconstruction of coronal mass ejections using coronagraph data. Ann. Geophys. 28, 203. DOI . http://esoads.eso.org/abs/2010AnGeo..28..203M .

    Article  ADS  Google Scholar 

  • Moran, T.G., Davila, J.M.: 2004, Three-dimensional polarimetric imaging of coronal mass ejections. Science 305, 66. DOI .

    Article  ADS  Google Scholar 

  • Morrison, P.: 1956, Solar origin of cosmic-ray time variations. Phys. Rev. 101, 1397. DOI .

    Article  ADS  Google Scholar 

  • Nitta, N.V., Aschwanden, M.J., Freeland, S.L., Lemen, J.R., Wülser, J.-P., Zarro, D.M.: 2014, The association of solar flares with coronal mass ejections during the extended solar minimum. Solar Phys. 289, 1257. DOI .

    Article  ADS  Google Scholar 

  • Olmedo, O., Zhang, J., Wechsler, H., Poland, A., Borne, K.: 2008, Automatic detection and tracking of coronal mass ejections in coronagraph time series. Solar Phys. 248, 485. DOI .

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI .

    Article  ADS  Google Scholar 

  • Pick, M., Forbes, T.G., Mann, G., Cane, H.V., Chen, J., Ciaravella, A., Cremades, H., Howard, R.A., Hudson, H.S., Klassen, A., Klein, K.L., Lee, M.A., Linker, J.A., Maia, D., Mikic, Z., Raymond, J.C., Reiner, M.J., Simnett, G.M., Srivastava, N., Tripathi, D., Vainio, R., Vourlidas, A., Zhang, J., Zurbuchen, T.H., Sheeley, N.R., Marqué, C.: 2006, Multi-wavelength observations of CMEs and associated phenomena. Report of working group F. Space Sci. Rev. 123, 341. DOI .

    Article  ADS  Google Scholar 

  • Robbrecht, E., Berghmans, D.: 2004, Automated recognition of coronal mass ejections (CMEs) in near-real-time data. Astron. Astrophys. 425, 1097. DOI . ADS .

    Article  ADS  Google Scholar 

  • Robbrecht, E., Patsourakos, S., Vourlidas, A.: 2009, No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys. J. 701, 283. DOI .

    Article  ADS  Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI .

    Article  ADS  Google Scholar 

  • Schwenn, R., dal Lago, A., Huttunen, E., Gonzalez, W.D.: 2005, The association of coronal mass ejections with their effects near the Earth. Ann. Geophys. 23, 1033. DOI .

    Article  ADS  Google Scholar 

  • Song, H.Q., Chen, Y., Ye, D.D., Han, G.Q., Du, G.H., Li, G., Zhang, J., Hu, Q.: 2013, A study of fast flareless coronal mass ejections. Astrophys. J. 773, 129. DOI .

    Article  ADS  Google Scholar 

  • Temmer, M., Preiss, S., Veronig, A.M.: 2009, CME projection effects studied with STEREO/COR and SOHO/LASCO. Solar Phys. 256, 183. DOI . ADS .

    Article  ADS  Google Scholar 

  • Thernisien, A., Vourlidas, A., Howard, R.A.: 2011, CME reconstruction: Pre-STEREO and STEREO era. J. Atmos. Solar-Terr. Phys. 73, 1156. DOI . http://esoads.eso.org/abs/2011JASTP..73.1156T .

    Article  ADS  Google Scholar 

  • Tousey, R., Bartoe, J.D.F., Bohilin, J.D., Brueckner, G.E., Purcell, J.D., Scherrer, V.E., Schumacher, R.J., Sheeley, N.R., Vanhoosier, M.E.: 1974, Preliminary results from the NRL/ATM instruments from SKYLAB SL/2. In: Newkirk, G.A. (ed.) Coronal Disturbances, IAU Symp. 57, 491.

    Chapter  Google Scholar 

  • van de Hulst, H.C.: 1950, The amount of polarization by interstellar grains. Astrophys. J. 112, 1. DOI .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Howard, R.A.: 2006, The proper treatment of coronal mass ejection brightness: A new methodology and implications for observations. Astrophys. J. 642, 1216. DOI .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Lynch, B.J., Howard, R.A., Li, Y.: 2013, How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Solar Phys. 284, 179. DOI .

    ADS  Google Scholar 

  • Vršnak, B., Sudar, D., Ruždjak, D., Žic, T.: 2007, Projection effects in coronal mass ejections. Astron. Astrophys. 469, 339. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y., Chen, C., Gui, B., Shen, C., Ye, P., Wang, S.: 2011, Statistical study of coronal mass ejection source locations: Understanding CMEs viewed in coronagraphs. J. Geophys. Res. 116, 4104. DOI . ADS .

    Article  Google Scholar 

  • Webb, D.F.: 1988, Erupting prominences and the geometry of coronal mass ejections. J. Geophys. Res. 93, 1749. DOI .

    Article  ADS  Google Scholar 

  • Webb, D.F., Howard, T.A.: 2012, Coronal mass ejections: Observations. Living Rev. Solar Phys. 9, 3. DOI . http://www.livingreviews.org/lrsp-2012-3 .

    Article  ADS  Google Scholar 

  • Xie, H., Ofman, L., Lawrence, G.: 2004, Cone model for halo CMEs: Application to space weather forecasting. J. Geophys. Res. 109, 3109. DOI .

    Article  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, 7105. DOI .

    Article  Google Scholar 

  • Zhao, X.P., Plunkett, S.P., Liu, W.: 2002, Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model. J. Geophys. Res. 107, 1223. DOI .

    Article  Google Scholar 

Download references

Acknowledgements

H. Cremades and C.H. Mandrini acknowledge financial support from the Argentinean grants PICT 2012-973 (ANPCyT) and PIP 2012-100413 (CONICET). H. Cremades and C.H. Mandrini are members of the Carrera del Investigador Científico (CONICET). A.M. Crescitelli acknowledges funding from the Comisión Nacional de Energía Atómica (CNEA). The authors are thankful to Germán Cristiani for his help with GOES data and to the referee for valuable comments and suggestions. The SOHO/LASCO data are produced by an international consortium of the NRL (USA), MPI für Sonnensystemforschung (Germany), Laboratoire d’Astronomie (France), and the University of Birmingham (UK). SOHO is a project of international cooperation between ESA and NASA. The STEREO/SECCHI project is an international consortium of the NRL, LMSAL and NASA/GSFC (USA), RAL and Univ. Bham (UK), MPS (Germany), CSL (Belgium), IOTA and IAS (France). SDO/AIA and SDO/HMI data are courtesy of the NASA/SDO and the AIA and HMI Science Teams. This article uses data from the SOHO/LASCO CME catalog generated and maintained at the CDAW Data Center by NASA and the CUA in cooperation with NRL, from the CACTus CME catalog generated and maintained by the SIDC at the ROB, the SEEDS project supported by the NASA/LWS and AISRP programs, and the LASCO ARTEMIS Catalog built by the Laboratoire d’Astrophysique de Marseille.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Cremades.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cremades, H., Mandrini, C.H., Schmieder, B. et al. Coronal Mass Ejections from the Same Active Region Cluster: Two Different Perspectives. Sol Phys 290, 1671–1686 (2015). https://doi.org/10.1007/s11207-015-0717-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0717-9

Keywords

Navigation