Skip to main content
Log in

Observations of Photospheric Vortical Motions During the Early Stage of Filament Eruption

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Solar filaments/prominences exhibit rotational motion during different phases of their evolution from their formation to eruption. We have observed the rotational/vortical motion in the photosphere near the ends of ten filaments during their initial phase of eruption, at the onset of the fast rise phase. All the filaments were associated with active regions. The photospheric vortical motions we observed lasted for 4 – 20 minutes. In the vicinity of the conjugate ends of the filament the direction of rotation was opposite, except for two cases, where rotational motion was observed at only one end point. The sudden onset of a large photospheric vortex motion could have played a role in destabilizing the filament by transporting axial flux into the activated filament thereby increasing the outward magnetic pressure in it. The outward magnetic pressure may have pushed the filament/flux rope to the height where the torus instability criterion was satisfied, and hence it could have caused the filament instability and eruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. Movies generated from SDO/AIA 304 Å images of the filament eruptions associated with active region NOAA 11226, 11283, 11515, and 11560 discussed in this paper are available on our ftp site ( ftp://ftp.iiap.res.in/sajal/ ). The movies are named according to the date of observations of the events. The movies for events 5 – 10 discussed in this paper are also available on the same ftp site.

  2. Movies generated from SDO/AIA 193 Å images of the filament eruptions associated with active region NOAA 11226, 11283, 11515, and 11560 discussed in this paper are available on our web site ( ftp://ftp.iiap.res.in/sajal/ ). The movies are named according to the date of observations of the events.

References

  • Alexander, C.E., Walsh, R.W., Régnier, S., Cirtain, J., Winebarger, A.R., Golub, L., Kobayashi, K., Platt, S., Mitchell, N., Korreck, K., DePontieu, B., DeForest, C., Weber, M., Title, A., Kuzin, S.: 2013, Anti-parallel EUV flows observed along active region filament threads with Hi-C. Astrophys. J. Lett. 775, L32. DOI . ADS .

    Article  ADS  Google Scholar 

  • Amari, T., Luciani, J.F., Aly, J.J., Mikic, Z., Linker, J.: 2003, Coronal mass ejection: Initiation, magnetic helicity, and flux ropes. II. Turbulent diffusion-driven evolution. Astrophys. J. 595, 1231. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bangert, P.D., Martin, S.F., Berger, M.A.: 2003, Solar coronal magnetic filaments: The roll effect in erupting prominences. In: AAS/Solar Physics Division Meeting #34, Bulletin of the American Astronomical Society 35, 815. ADS .

    Google Scholar 

  • Bocchialini, K., Koutchmy, S., Solomon, J., Tavabi, E.: 2012, Homologous flares inducing EUV filament oscillations with subsequent eruption. In: Faurobert, M., Fang, C., Corbard, T. (eds.) EAS Publ. Ser. 55, 335. DOI . ADS .

    Google Scholar 

  • Chen, J.: 1989, Effects of toroidal forces in current loops embedded in a background plasma. Astrophys. J. 338, 453. DOI . ADS .

    Article  ADS  MathSciNet  Google Scholar 

  • Chen, J., Kunkel, V.: 2010, Temporal and physical connection between coronal mass ejections and flares. Astrophys. J. 717, 1105. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cheng, X., Ding, M.D., Guo, Y., Zhang, J., Vourlidas, A., Liu, Y.D., Olmedo, O., Sun, J.Q., Li, C.: 2014, Tracking the evolution of a coherent magnetic flux rope continuously from the inner to the outer corona. Astrophys. J. 780, 28. DOI . ADS .

    Article  ADS  Google Scholar 

  • Contarino, L., Romano, P., Yurchyshyn, V.B., Zuccarello, F.: 2003, Themis, BBSO, MDI and trace observations of a filament eruption. Solar Phys. 216, 173. DOI . ADS .

    Article  ADS  Google Scholar 

  • De Rosa, M.L., Toomre, J.: 2004, Evolution of solar supergranulation. Astrophys. J. 616, 1242. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dhara, S.K., Ravindra, B., Banyal, R.K.: 2014, Filament eruption in association with rotational motion near the filament footpoints. New Astron. 26, 86. DOI . ADS .

    Article  ADS  Google Scholar 

  • Filippov, B.P., Gopalswamy, N., Lozhechkin, A.V.: 2001, Non-radial motion of eruptive filaments. Solar Phys. 203, 119. ADS .

    Article  ADS  Google Scholar 

  • Gibson, S.E., Foster, D., Burkepile, J., de Toma, G., Stanger, A.: 2006, The calm before the storm: The link between quiescent cavities and coronal mass ejections. Astrophys. J. 641, 590. DOI . ADS .

    Article  ADS  Google Scholar 

  • Green, L.M., Kliem, B., Török, T., van Driel-Gesztelyi, L., Attrill, G.D.R.: 2007, Transient coronal sigmoids and rotating erupting flux ropes. Solar Phys. 246, 365. DOI . ADS .

    Article  ADS  Google Scholar 

  • Guo, Y., Schmieder, B., Démoulin, P., Wiegelmann, T., Aulanier, G., Török, T., Bommier, V.: 2010, Coexisting flux rope and dipped arcade sections along one solar filament. Astrophys. J. 714, 343. DOI . ADS .

    Article  ADS  Google Scholar 

  • Innes, D.E., Genetelli, A., Attie, R., Potts, H.E.: 2009, Quiet Sun mini-coronal mass ejections activated by supergranular flows. Astron. Astrophys. 495, 319. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jockers, K.: 1978, Transport of twist in force-free magnetic flux tubes. Astrophys. J. 220, 1133. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kliem, B., Török, T.: 2006, Torus instability. Phys. Rev. Lett. 96(25), 255002. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kliem, B., Su, Y.N., van Ballegooijen, A.A., DeLuca, E.E.: 2013, Magnetohydrodynamic modeling of the solar eruption on 2010 April 8. Astrophys. J. 779, 129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Li, X., Morgan, H., Leonard, D., Jeska, L.: 2012, A solar tornado observed by AIA/SDO: Rotational flow and evolution of magnetic helicity in a prominence and cavity. Astrophys. J. Lett. 752, L22. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liggett, M., Zirin, H.: 1984, Rotation in prominences. Solar Phys. 91, 259. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liu, C., Lee, J., Yurchyshyn, V., Deng, N., Cho, K.-s., Karlický, M., Wang, H.: 2007, The eruption from a sigmoidal solar active region on 2005 May 13. Astrophys. J. 669, 1372. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liu, W., Wang, T.-J., Dennis, B.R., Holman, G.D.: 2009, Episodic x-ray emission accompanying the activation of an eruptive prominence: Evidence of episodic magnetic reconnection. Astrophys. J. 698, 632. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mackay, D.H., Karpen, J.T., Ballester, J.L., Schmieder, B., Aulanier, G.: 2010, Physics of solar prominences: II – Magnetic structure and dynamics. Space Sci. Rev. 151, 333. DOI . ADS .

    Article  ADS  Google Scholar 

  • Manchester, W. IV, Gombosi, T., DeZeeuw, D., Fan, Y.: 2004, Eruption of a buoyantly emerging magnetic flux rope. Astrophys. J. 610, 588. DOI . ADS .

    Article  ADS  Google Scholar 

  • Martin, S.F.: 1998, Conditions for the formation and maintenance of filaments (Invited review). Solar Phys. 182, 107. DOI . ADS .

    Article  ADS  Google Scholar 

  • Martin, S.F.: 2003, Signs of helicity in solar prominences and related features. Adv. Space Res. 32, 1883. DOI . ADS .

    Article  ADS  Google Scholar 

  • November, L.J., Simon, G.W.: 1988, Precise proper-motion measurement of solar granulation. Astrophys. J. 333, 427. DOI . ADS .

    Article  ADS  Google Scholar 

  • Panasenco, O., Martin, S.F.: 2008, Topological analyses of symmetric eruptive prominences. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Subsurface and Atmospheric Influences on Solar Activity, Astronomical Society of the Pacific Conference Series 383, 243. ADS .

    Google Scholar 

  • Panasenco, O., Martin, S., Joshi, A.D., Srivastava, N.: 2011, Rolling motion in erupting prominences observed by STEREO. J. Atmos. Solar-Terr. Phys. 73, 1129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Panasenco, O., Martin, S.F., Velli, M., Vourlidas, A.: 2013, Origins of rolling, twisting, and non-radial propagation of eruptive solar events. Solar Phys. 287, 391. DOI . ADS .

    Article  ADS  Google Scholar 

  • Panesar, N.K., Innes, D.E., Tiwari, S.K., Low, B.C.: 2013, A solar tornado triggered by flares? Astron. Astrophys. 549, A105. DOI . ADS .

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1974, The dynamical properties of twisted ropes of magnetic field and the vigor of new active regions on the Sun. Astrophys. J. 191, 245. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ravindra, B.: 2006, Moving magnetic features in and out of penumbral filaments. Solar Phys. 237, 297. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rust, D.M.: 2003, The helicial flux rope structure of solar filaments. Adv. Space Res. 32, 1895. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rust, D.M., LaBonte, B.J.: 2005, Observational evidence of the kink instability in solar filament eruptions and sigmoids. Astrophys. J. Lett. 622, L69. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sakurai, K.: 1976, Motion of sunspot magnetic fields and its relation to solar flares. Solar Phys. 47, 261. DOI . ADS .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI . ADS .

    Article  ADS  Google Scholar 

  • Su, Y., van Ballegooijen, A.: 2013, Rotating motions and modeling of the erupting solar polar-crown prominence on 2010 December 6. Astrophys. J. 764, 91. DOI . ADS .

    Article  ADS  Google Scholar 

  • Su, Y., Wang, T., Veronig, A., Temmer, M., Gan, W.: 2012, Solar magnetized ”Tornadoes:” relation to filaments. Astrophys. J. Lett. 756, L41. DOI . ADS .

    Article  ADS  Google Scholar 

  • Thompson, W.T.: 2011, Strong rotation of an erupting quiescent polar crown prominence. J. Atmos. Solar-Terr. Phys. 73, 1138. DOI . ADS .

    Article  ADS  Google Scholar 

  • Titov, V.S., Démoulin, P.: 1999, Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707. ADS .

    ADS  Google Scholar 

  • Török, T., Berger, M.A., Kliem, B.: 2010, The writhe of helical structures in the solar corona. Astron. Astrophys. 516, A49. DOI . ADS .

    Article  Google Scholar 

  • Török, T., Kliem, B.: 2005, Confined and ejective eruptions of kink-unstable flux ropes. Astrophys. J. Lett. 630, L97. DOI . ADS .

    Article  ADS  Google Scholar 

  • Török, T., Kliem, B., Berger, M.A., Linton, M.G., Démoulin, P., van Driel-Gesztelyi, L.: 2014, The evolution of writhe in kink-unstable flux ropes and erupting filaments. Plasma Phys. Control. Fusion 56(6), 064012. DOI . ADS .

    Article  ADS  Google Scholar 

  • van Ballegooijen, A.A.: 2004, Observations and modeling of a filament on the Sun. Astrophys. J. 612, 519. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Muglach, K., Kliem, B.: 2009, Endpoint brightenings in erupting filaments. Astrophys. J. 699, 133. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wedemeyer, S., Scullion, E., Rouppe van der Voort, L., Bosnjak, A., Antolin, P.: 2013, Are giant tornadoes the legs of solar prominences? Astrophys. J. 774, 123. DOI . ADS .

    Article  ADS  Google Scholar 

  • Welsch, B.T., Fisher, G.H., Abbett, W.P., Regnier, S.: 2004, ILCT: Recovering photospheric velocities from magnetograms by combining the induction equation with local correlation tracking. Astrophys. J. 610, 1148. DOI . ADS .

    Article  ADS  Google Scholar 

  • Williams, D.R., Török, T., Démoulin, P., van Driel-Gesztelyi, L., Kliem, B.: 2005, Eruption of a kink-unstable filament in NOAA active region 10696. Astrophys. J. Lett. 628, L163. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhou, G.P., Wang, J.X., Zhang, J., Chen, P.F., Ji, H.S., Dere, K.: 2006, Two successive coronal mass ejections driven by the kink and drainage instabilities of an eruptive prominence. Astrophys. J. 651, 1238. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zirker, J.B., Engvold, O., Martin, S.F.: 1998, Counter-streaming gas flows in solar prominences as evidence for vertical magnetic fields. Nature 396, 440. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zuccarello, F.P., Seaton, D.B., Mierla, M., Poedts, S., Rachmeler, L.A., Romano, P., Zuccarello, F.: 2014, Observational evidence of torus instability as trigger mechanism for coronal mass ejections: The 2011 August 4 filament eruption. Astrophys. J. 785, 88. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the referee for insightful comments, which helped us to improve the content in the manuscript. The AIA data used here are the courtesy of NASA/SDO and AIA consortium. SDO/HMI is a joint effort of many teams and individuals to whom we are greatly indebted for providing the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal Kumar Dhara.

Appendix

Appendix

The filament locations in He II 304 Å SDO/AIA channel for events 5 – 10 are displayed in Figures 712(a), respectively. The position of the filament on an averaged dopplergram (greyscale) and averaged horizontal flow map (arrows) is shown by overlaying the contours of the filament extracted from 304 Å images. These are shown in Figures 712(b), respectively. The observed rotational motions at the ends of the filament footpoints for all the events are also shown in bottom-left(c) and bottom-right(d) rows in Figures 712. The date and time of the observations, the filament location on the Sun, associated active region number, the filament activation time, the importance of the associated flare, and the velocities of the erupting filaments are given in Table 1. The starting and ending time and the type of the rotational motions seen at both ends of the filaments for all events are also given in the same table.

Figure 7
figure 7

(a) The filament observed in SDO/AIA 304 Å channel for event 5 is indicated by a white arrow. Magnetic field isocontours from SHO/HMI overlaid on the 304 Å image. The red and green contours represent the positive and negative polarities with magnetic field strength values of ±150, 400, 600, and 900 G, respectively. (b) Averaged horizontal velocity vectors shown in arrows are overlaid upon an averaged dopplergram. The duration of the averaging time is given above the panel. The contour of the filament, extracted from the 304 Å image is also shown. The boxed regions 1 and 2 show the location of the eastern and western ends of the filament, respectively. (c, d) Rotational velocity pattern observed for this event. (c) Image corresponds to location 1 and (d) to location 2 in (b).

Figure 8
figure 8

Same as Figure 7, but for event 6.

Figure 9
figure 9

Same as Figure 7, but for event 7.

Figure 10
figure 10

Same as Figure 7, but for event 8.

Figure 11
figure 11

Same as Figure 7, but for event 9.

Figure 12
figure 12

Same as Figure 7, but for event 10. (c) Rotational velocity pattern observed in the location 1 for this event.

The filament in event 5 is a long one, associated with two active regions. One of its ends is located in AR 11451 and the other end is in AR 11450. Before the filament eruption, bidirectional flows were observed in the filament. There were three filament eruptions observed in AR 11936 (events 6 – 8). Event 6 was observed on 31 December 2013. The other two events were observed on 01 January 2014. On 31 December 2013 only one filament existed in the active region and before the eruption this filament bifurcated into two halves. The right-side half erupted and the left-side one did not erupt. Later, again a filament formed in the same region and the bifurcation disappeared. Event 7 also occurred in the same active region, but the filament was located North of the 31 December 2013 event. This was a failed filament eruption. Event 8 also occurred on the same day, a few hours after event 7. The erupting filament was the same as the one which erupted on 31 December 2013. Unlike the 31st December event, however, here the whole filament was activated with no bifurcation. But it was a failed eruption. In event 9, AR 12027 was surrounded by filaments in all directions. It was not a single filament, in fact it was a group of 3 – 4 segmented filaments. On 04 April 2014 the North–East portion of the filament erupted (event 9). Before the eruption a large scale mass flow was observed inside the filament. Event 10 occurred in AR 12035. The filament was hard to see before the eruption in the active region. But during the filament activation a cusp shaped filament was observed in the active region. This filament erupted completely during a C7.3 class flare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhara, S.K., Ravindra, B. & Banyal, R.K. Observations of Photospheric Vortical Motions During the Early Stage of Filament Eruption. Sol Phys 289, 4481–4500 (2014). https://doi.org/10.1007/s11207-014-0597-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-014-0597-4

Keywords

Navigation