Skip to main content
Log in

Validation and Benchmarking of a Practical Free Magnetic Energy and Relative Magnetic Helicity Budget Calculation in Solar Magnetic Structures

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In earlier works we introduced and tested a nonlinear force-free (NLFF) method designed to self-consistently calculate the coronal free magnetic energy and the relative magnetic helicity budgets of observed solar magnetic structures. In principle, the method requires only a single, photospheric or low-chromospheric, vector magnetogram of a quiet-Sun patch or an active region and performs calculations without three-dimensional magnetic and velocity-field information. In this work we strictly validate this method using three-dimensional coronal magnetic fields. Benchmarking employs both synthetic, three-dimensional magnetohydrodynamic simulations and nonlinear force-free field extrapolations of the active-region solar corona. Our time-efficient NLFF method provides budgets that differ from those of more demanding semi-analytical methods by a factor of approximately three, at most. This difference is expected to come from the physical concept and the construction of the method. Temporal correlations show more discrepancies that are, however, soundly improved for more complex, massive active regions, reaching correlation coefficients on the order of, or exceeding, 0.9. In conclusion, we argue that our NLFF method can be reliably used for a routine and fast calculation of the free magnetic energy and relative magnetic helicity budgets in targeted parts of the solar magnetized corona. As explained in this article and in previous works, this is an asset that can lead to valuable insight into the physics and triggering of solar eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Notes

  1. The same methodology can be generalized for a semi-infinite (i.e., partly bounded) volume, where the field becomes zero at infinity.

  2. In this case, however, the reasonable difference between E c and \(E'_{c}\) indicates that the extrapolation has nonetheless achieved a near-zero |∇⋅B|.

References

  • Arber, T.D., Haynes, M., Leake, J.E.: 2007, Emergence of a flux tube through a partially ionized solar atmosphere. Astrophys. J. 666, 541. DOI . ADS .

    Article  ADS  Google Scholar 

  • Arber, T.D., Longbottom, A.W., Gerrard, C.L., Milne, A.M.: 2001, A staggered grid, Lagrangian–Eulerian remap code for 3D MHD simulations. J. Comput. Phys. 171, 151. ADS .

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Archontis, V., Hood, A.W.: 2012, Magnetic flux emergence: a precursor of solar plasma expulsion. Astron. Astrophys. 537, A62. DOI . ADS .

    Article  ADS  Google Scholar 

  • Archontis, V., Hood, A.W., Tsinganos, K.: 2013, The emergence of weakly twisted magnetic fields in the Sun. Astrophys. J. 778, 42. DOI . ADS .

    Article  ADS  Google Scholar 

  • Archontis, V., Hood, A.W., Tsinganos, K.: 2014, Recurrent explosive eruptions and the “sigmoid-to-arcade” transformation in the Sun driven by dynamical magnetic flux emergence. Astrophys. J. Lett. 786, L21. DOI . ADS .

    Article  ADS  Google Scholar 

  • Archontis, V., Moreno-Insertis, F., Galsgaard, K., Hood, A., O’Shea, E.: 2004, Emergence of magnetic flux from the convection zone into the corona. Astron. Astrophys. 426, 1047. DOI . ADS .

    Article  ADS  Google Scholar 

  • Berger, M.A.: 1999, Introduction to magnetic helicity. Plasma Phys. Control. Fusion 41, 167. DOI . ADS .

    Article  ADS  Google Scholar 

  • Berger, M.A., Field, G.B.: 1984, The topological properties of magnetic helicity. J. Fluid Mech. 147, 133.

    Article  ADS  MathSciNet  Google Scholar 

  • Borrero, J.M., Tomczyk, S., Kubo, M., Socas-Navarro, H., Schou, J., Couvidat, S., Bogart, R.: 2011, VFISV: very fast inversion of the Stokes vector for the Helioseismic and Magnetic Imager. Solar Phys. 273, 267. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chae, J.: 2001, Observational determination of the rate of magnetic helicity transport through the solar surface via the horizontal motion of field line footpoints. Astrophys. J. Lett. 560, L95. DOI . ADS .

    Article  ADS  Google Scholar 

  • De Rosa, M.L., Schrijver, C.J., Barnes, G., Leka, K.D., Lites, B.W., Aschwanden, M.J., Amari, T., Canou, A., McTiernan, J.M., Régnier, S., Thalmann, J.K., Valori, G., Wheatland, M.S., Wiegelmann, T., Cheung, M.C.M., Conlon, P.A., Fuhrmann, M., Inhester, B., Tadesse, T.: 2009, A critical assessment of nonlinear force-free field modeling of the solar corona for Active Region 10953. Astrophys. J. 696, 1780. DOI . ADS .

    Article  ADS  Google Scholar 

  • Démoulin, P., Pariat, E., Berger, M.A.: 2006, Basic properties of mutual magnetic helicity. Solar Phys. 233, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • DeVore, C.R.: 2000, Magnetic helicity generation by solar differential rotation. Astrophys. J. 539, 944. DOI . ADS .

    Article  ADS  Google Scholar 

  • Finn, J.M., Antonsen, T.M.: 1985, Magnetic helicity: what is it and what is it good for? Comments Plasma Phys. Control. Fusion 9, 111.

    Google Scholar 

  • Freedman, M.H., Berger, M.A.: 1993, Combinatorial relaxation of magnetic fields. Geophys. Astrophys. Fluid Dyn. 73, 91. DOI . ADS .

    Article  ADS  MathSciNet  Google Scholar 

  • Gary, G.A., Hagyard, M.J.: 1990, Transformation of vector magnetograms and the problems associated with the effects of perspective and the azimuthal ambiguity. Solar Phys. 126, 21. DOI . ADS .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K.: 2005, A new technique for a routine azimuth disambiguation of solar vector magnetograms. Astrophys. J. Lett. 629, L69. DOI . ADS .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., LaBonte, B.J.: 2007, Magnetic energy and helicity budgets in the active region solar corona. I. Linear force-free approximation. Astrophys. J. 671, 1034. DOI . ADS .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., Rust, D.M.: 2007, Quantitative forecasting of major solar flares. Astrophys. J. Lett. 661, L109. DOI . ADS .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., Tziotziou, K., Raouafi, N.-E.: 2012, Magnetic energy and helicity budgets in the active-region solar corona. II. Nonlinear force-free approximation. Astrophys. J. 759, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: 1983, Optimization by simulated annealing. Science 220, 671. DOI . ADS .

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Kusano, K., Maeshiro, T., Yokoyama, T., Sakurai, T.: 2002, Measurement of magnetic helicity injection and free energy loading into the solar corona. Astrophys. J. 577, 501. DOI . ADS .

    Article  ADS  Google Scholar 

  • Low, B.C.: 1994, Magnetohydrodynamic processes in the solar corona: flares, coronal mass ejections, and magnetic helicity. Phys. Plasmas 1, 1684. DOI . ADS .

    Article  ADS  Google Scholar 

  • Low, B.C., Lou, Y.Q.: 1990, Modeling solar force-free magnetic fields. Astrophys. J. 352, 343. DOI . ADS .

    Article  ADS  Google Scholar 

  • Metcalf, T.R., Leka, K.D., Barnes, G., Lites, B.W., Georgoulis, M.K., Pevtsov, A.A., Balasubramaniam, K.S., Gary, G.A., Jing, J., Li, J., Liu, Y., Wang, H.N., Abramenko, V., Yurchyshyn, V., Moon, Y.-J.: 2006, An overview of existing algorithms for resolving the 180° ambiguity in vector magnetic fields: quantitative tests with synthetic data. Solar Phys. 237, 267. DOI . ADS .

    Article  ADS  Google Scholar 

  • Metcalf, T.R., De Rosa, M.L., Schrijver, C.J., Barnes, G., van Ballegooijen, A.A., Wiegelmann, T., Wheatland, M.S., Valori, G., McTtiernan, J.M.: 2008, Nonlinear force-free modeling of coronal magnetic fields. II. Modeling a filament arcade and simulated chromospheric and photospheric vector fields. Solar Phys. 247, 269. DOI . ADS .

    Article  ADS  Google Scholar 

  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: 1953, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pariat, E., Antiochos, S.K., DeVore, C.R.: 2009, A model for solar polar jets. Astrophys. J. 691, 61. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: 1992, Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd edn., Cambridge University Press, New York. ISBN 0521437164. ADS .

    Google Scholar 

  • Raouafi, N.-E., Georgoulis, M.K., Rust, D.M., Bernasconi, P.N.: 2010, Micro-sigmoids as progenitors of coronal jets: is eruptive activity self-similarly multi-scaled? Astrophys. J. 718, 981. DOI . ADS .

    Article  ADS  Google Scholar 

  • Régnier, S., Amari, T., Canfield, R.C.: 2005, Self and mutual magnetic helicities in coronal magnetic configurations. Astron. Astrophys. 442, 345. DOI . ADS .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schmidt, H.U.: 1964, On the observable effects of magnetic energy storage and release connected with solar flares, NASA SP-50, 107. ADS .

  • Schrijver, C.J., De Rosa, M.L., Metcalf, T.R., Liu, Y., McTiernan, J., Régnier, S., Valori, G., Wheatland, M.S., Wiegelmann, T.: 2006, Nonlinear force-free modeling of coronal magnetic fields, part I: a quantitative comparison of methods. Solar Phys. 235, 161. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sun, X., Hoeksema, J.T., Liu, Y., Wiegelmann, T., Hayashi, K., Chen, Q., Thalmann, J.: 2012, Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation. Astrophys. J. 748, 77. DOI . ADS .

    Article  ADS  Google Scholar 

  • Swartztrauber, P.N., Sweet, R.A.: 1979, Algorithm 541: efficient Fortran subprograms for the solution of separable elliptic partial differential equations [D3]. ACM Trans. Math. Softw. 5(3), 352. DOI .

    Article  Google Scholar 

  • Tziotziou, K., Georgoulis, M.K., Raouafi, N.-E.: 2012, The magnetic energy–helicity diagram of solar active regions. Astrophys. J. Lett. 759, L4. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tziotziou, K., Georgoulis, M.K., Liu, Y.: 2013, Interpreting eruptive behavior in NOAA AR 11158 via the region’s magnetic energy and relative-helicity budgets. Astrophys. J. 772, 115. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tziotziou, K., Tsiropoula, G., Georgoulis, M.K., Kontogiannis, I.: 2014, Energy and helicity budgets of solar quiet regions. Astron. Astrophys. 564, A86. DOI . ADS .

    Article  ADS  Google Scholar 

  • Valori, G., Démoulin, P., Pariat, E.: 2012, Comparing values of the relative magnetic helicity in finite volumes. Solar Phys. 278, 347. DOI . ADS .

    Article  ADS  Google Scholar 

  • Valori, G., Démoulin, P., Pariat, E., Masson, S.: 2013, Accuracy of magnetic energy computations. Astron. Astrophys. 553, A38. DOI . ADS .

    Article  ADS  Google Scholar 

  • Welsch, B.T., Abbett, W.P., De Rosa, M.L., Fisher, G.H., Georgoulis, M.K., Kusano, K., Longcope, D.W., Ravindra, B., Schuck, P.W.: 2007, Tests and comparisons of velocity-inversion techniques. Astrophys. J. 670, 1434. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wheatland, M.S., Sturrock, P.A., Roumeliotis, G.: 2000, An optimization approach to reconstructing force-free fields. Astrophys. J. 540, 1150. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wiegelmann, T.: 2004, Optimization code with weighting function for the reconstruction of coronal magnetic fields. Solar Phys. 219, 87. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wiegelmann, T., Inhester, B., Sakurai, T.: 2006, Preprocessing of vector magnetograph data for a nonlinear force-free magnetic field reconstruction. Solar Phys. 233, 215. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research has been carried out in the framework of the research projects hosted by the RCAAM of the Academy of Athens. The observations used are courtesy of NASA/SDO and the HMI science team. We thank X. Sun and Y. Liu for the magnetic-field extrapolations of NOAA AR 11158. The simulations were performed on the STFC and SRIF funded UKMHD cluster, at the University of St Andrews. MKG is a Marie Curie Fellow. VA acknowledges support by EU (IEF-272549 grant). This work was supported from the EU’s Seventh Framework Programme under grant agreement no. PIRG07-GA-2010-268245. It has been also co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Moraitis.

Appendices

Appendix A: Error Estimation for the Semi-analytical Method

From the vector potentials A, A p we define the reconstructed fields B =∇×A, \(\mathbf{B}_{\mathrm{p}}^{*}=\nabla\times\mathbf{A}_{\mathrm{p}}\). We then assign an uncertainty to each field simply as δ B=BB and \(\delta \mathbf{B}_{\mathrm{p}}=\mathbf{B}_{\mathrm{p}}-\mathbf{B}_{\mathrm{p}}^{*}\). Of course, uncertainties and errors in our calculations have various origins, such as the solution of Laplace’s equation or the numerical integrations for obtaining the vector potentials. Since we cannot quantify these errors trivially, we simply treat them as zero and define a single error from the difference between the given and reconstructed fields, which can serve as a lower limit to the actual error.

The error in the total relative helicity can be written as

$$ \delta H=\sqrt{(\delta H_{\rm mut})^2+(\delta H_{\rm self})^2}, $$
(22)

assuming that the two errors are independent. Since all quantities of interest are volume integrals of their respective density, that is, of the form \(X=\int{\rm dV}\,\mathcal{X}\), the error in them will be

$$ \delta X=\lambda^3 \sqrt{\sum_{i}( \delta\mathcal{X}_i)^2}, $$
(23)

where λ 3 represents the volume element and summation is made over all points in the volume. The standard error propagation for the mutual-helicity density error leads to

$$ \delta\mathcal{H}_{\mathrm{mut},i}= \bigl(4A_{px}^2\bigl( \delta B_x^2+\delta B_{px}^2 \bigr)+4A_{py}^2\bigl(\delta B_y^2+ \delta B_{py}^2\bigr) \bigr)^{1/2}, $$
(24)

where all quantities in the right-hand side are to be taken at point i. In a similar fashion, we can find the error in self-helicity density as

$$ \delta\mathcal{H}_{\mathrm{self},i}= \bigl((A_x-A_{px})^2 \bigl(\delta B_x^2+\delta B_{px}^2 \bigr)+(A_y-A_{py})^2\bigl(\delta B_y^2+\delta B_{py}^2\bigr) \bigr)^{1/2}. $$
(25)

Likewise, the error in free energy can be obtained from

$$ \delta E_\mathrm{c}=\sqrt{(\delta E_{\rm t})^2+( \delta E_{\rm p})^2}, $$
(26)

where the error in total-energy density is

$$ \delta\mathcal{E}_{\mathrm{t},i}=\frac{1}{4\pi} \bigl((B_x\delta B_x)^2+(B_y\delta B_y)^2+(B_z \delta B_z)^2 \bigr)^{1/2} $$
(27)

and a similar formula holds for the error in potential-energy density, \(\delta\mathcal{E}_{\mathrm{p},i}\), if we replace B, δ B by B p, δ B p.

Another stringent error-estimation stems from the difference between the two theoretically equivalent free-energy formulas of Equations (3), (4), i.e. the imperfect solenoidal property of B. In this respect, an alternative error in free magnetic energy can be defined by \(\delta E'_{\mathrm{c}}=\frac{1}{2}\vert E_{\mathrm{c}}-E'_{\mathrm{c}}\vert \) and then the final error will be \(\max(\delta E_{\mathrm{c}},\delta E_{\mathrm{c}}')\). Where \(\delta E_{\mathrm{c}}'>\delta E_{\mathrm{c}}\), and to be consistent, the error in total energy is recalculated from Equation (26) with E c, E t interchanged.

Taking into account at this point the LFF energy-helicity study of Georgoulis and LaBonte (2007) and assuming their simplified relation between the free magnetic energy and the relative magnetic helicity, the error \(\delta E'_{\mathrm{c}}\) in free energy gives rise to an error δH′ in the relative helicity of the form

$$ \delta H'=H\frac{\delta E'_\mathrm{c}}{E_\mathrm{c}}. $$
(28)

The final selection of the error for relative magnetic helicity will thus be taken as max(δH,δH′), while the mutual- and self-helicity errors are calculated by Equations (23), (24) and (25).

Appendix B: Performance of the Semi-analytical Method in Simulated Data with Known Energy/Helicity Budgets

Here we test our potential-field and vector-potential methods against the well-known analytical nonlinear force-free field model of Low and Lou (1990). More specifically, we compare with the second Low and Lou’s case, namely the one with n=m=1 (in their notation) and source location parameters l=0.3, Φ=π/4. For this we used a rectangular box of size 2×2×1.6 (in arbitrary units) that was converted into a grid of 160×160×128 pixels. After calculating the vector potential A from Equations (10) – (13), we reconstructed the field B as B =∇×A. A visual comparison between the original and reconstructed fields at the lower boundary of the volume is shown in Figure 14. The method reproduces the given field quite well.

Figure 14
figure 14

Comparison of the Low and Lou (1990) magnetic field B (first row) with the reconstructed one B =∇×A (second row) at the bottom boundary (x,y,z=0). The third row shows the difference BB . The left, middle, and right columns show the x, y, and z components of the magnetic fields.

It is necessary to quantify the agreement between fields B and B . To this purpose we used the linear correlation coefficients for each component of the two fields, as well as the metrics described by Schrijver et al. (2006). Starting with the latter, the vector correlation of B, B is \(C_{\rm vec}=0.9967\), the Cauchy-Schwarz metric is \(C_{\rm CS}=0.9984\), the complement of the normalized vector error is \(E_{\rm n}'=0.9747\), the complement of the mean vector error is \(E_{\mathrm{m}}'=0.9496\), and the total magnetic energy normalized to the input case is ϵ=1.013. The correlation coefficients for the x and y components are practically 1, while the one for B z is slightly lower, ≈ 0.9935. This is a general rule, with the z-component of the field reproduced less well than the x and y-components, owing to the setup of the method. Indeed, with the used gauge the calculation of B z involves the most numerical operations, therefore it is susceptible to more accumulated errors. The corresponding metrics for the potential fields B p, \(\mathbf{B}_{\mathrm{p}}^{*}=\nabla\times\mathbf{A}_{\mathrm{p}}\) have similar values, indicating a good agreement for these fields as well.

Moreover, if we take as reference the top plane (at z=z 2) in the calculation of the vector potentials, the agreement between the two fields is slightly better. As an example, the vector correlation of B, B for the top level is \(C_{\rm vec}=0.9997\) and the complement of the mean vector error is \(E_{\rm m}'=0.9951\). Improved precision if the top plane is used as reference seems a general characteristic of the method that also is seen in other examples.

If we calculate the total relative helicity from Equation (6) using the volume-calculation method, we obtain H=−0.495 H LL, where \(H_{\mathrm{LL}}=|\int_{\mathcal{V}} \mathrm{d}V\,\mathbf{A}_{\mathrm{LL}}\cdot\mathbf{B}|\) is a non-invariant helicity. A LL is the vector potential that produces the Low and Lou (1990) field, given by

$$ \mathbf{A}_\mathrm{LL}=\frac{a}{r^2}\int_{-1}^\mu \mathrm{d}\mu'\,\frac{P^2(\mu ')}{1-\mu'^2}\hat{r}+\frac{P(\mu)}{r^2\sin\theta}\hat{\phi}, $$
(29)

where a 2=0.425 and P=P 1,1 in Low and Lou’s notation. One can easily verify that B=∇×A LL. If we replace A in Equation (6) with \(\mathbf{A}_{\mathrm{LL,}}\) we obtain H=−0.482 H LL, which means that our implementation of the Valori, Démoulin, and Pariat (2012) method produces the actual helicity of the Low and Lou model with an accuracy of ≈ 2.7 %.

The energy of the field, as calculated by Equation (3), is E t=45.0 in the arbitrary units used so far in this section. Similarly, the potential energy is E p=34.8, and so the free magnetic energy is E c=0.226 E t, a fraction that agrees with that found by Low and Lou (1990), although for a slightly different case (Φ=π/2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraitis, K., Tziotziou, K., Georgoulis, M.K. et al. Validation and Benchmarking of a Practical Free Magnetic Energy and Relative Magnetic Helicity Budget Calculation in Solar Magnetic Structures. Sol Phys 289, 4453–4480 (2014). https://doi.org/10.1007/s11207-014-0590-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-014-0590-y

Keywords

Navigation