Skip to main content
Log in

Assessing the Constrained Harmonic Mean Method for Deriving the Kinematics of ICMEs with a Numerical Simulation

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In this study we use a numerical simulation of an artificial coronal mass ejection (CME) to validate a method for calculating propagation directions and kinematical profiles of interplanetary CMEs (ICMEs). In this method observations from heliospheric images are constrained with in-situ plasma and field data at 1 AU. These data are used to convert measured ICME elongations into distance by applying the harmonic mean approach, which assumes a spherical shape of the ICME front. We used synthetic white-light images, similar to those observed by STEREO-A/HI, for three different separation angles between remote and in-situ spacecraft of 30, 60, and 90. To validate the results of the method, the images were compared to the apex speed profile of the modeled ICME, as obtained from a top view. This profile reflects the “true” apex kinematics because it is not affected by scattering or projection effects. In this way it is possible to determine the accuracy of the method for revealing ICME propagation directions and kinematics. We found that the direction obtained by the constrained harmonic mean method is not very sensitive to the separation angle (30 sep: ϕ=W7; 60 sep: ϕ=W12; 90 sep: ϕ=W15; true dir.: E0/W0). For all three cases the derived kinematics agree relatively well with the real kinematics. The best consistency is obtained for the 30 case, while with growing separation angle the ICME speed at 1 AU is increasingly overestimated (30 sep: ΔV arr≈− 50 km s−1, 60 sep: ΔV arr≈+ 75 km s−1, 90 sep: ΔV arr≈+ 125 km s−1). Especially for future L4/L5 missions, the 60 separation case is highly interesting in order to improve space-weather forecasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105, 10465 – 10480. doi: 10.1029/1999JA900262 .

    Article  ADS  Google Scholar 

  • Bein, B.M., Berkebile-Stoiser, S., Veronig, A.M., Temmer, M., Muhr, N., Kienreich, I., Utz, D., Vršnak, B.: 2011, Impulsive acceleration of coronal mass ejections. I. Statistics and coronal mass ejection source region characteristics. Astrophys. J. 738, 191. doi: 10.1088/0004-637X/738/2/191 .

    Article  ADS  Google Scholar 

  • Billings, D.E.: 1966, A Guide to the Solar Corona, Academic Press, New York.

    Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The large angle spectroscopic coronagraph (LASCO). Solar Phys. 162, 357 – 402. doi: 10.1007/BF00733434 .

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Plunkett, S.P., St. Cyr, O.C.: 2002, Successive CMEs and complex ejecta. J. Geophys. Res. 107, 1266. doi: 10.1029/2001JA000255 .

    Article  Google Scholar 

  • Cohen, O., Sokolov, I.V., Roussev, I.I., Arge, C.N., Manchester, W.B., Gombosi, T.I., Frazin, R.A., Park, H., Butala, M.D., Kamalabadi, F., Velli, M.: 2007, A semiempirical magnetohydrodynamical model of the solar wind. Astrophys. J. Lett. 654, L163. doi: 10.1086/511154 .

    Article  ADS  Google Scholar 

  • Davies, J.A., Harrison, R.A., Rouillard, A.P., Sheeley, N.R., Perry, C.H., Bewsher, D., Davis, C.J., Eyles, C.J., Crothers, S.R., Brown, D.S.: 2009, A synoptic view of solar transient evolution in the inner heliosphere using the heliospheric imagers on STEREO. Geophys. Res. Lett. 36, L02102. doi: 10.1029/2008GL036182 .

    Article  ADS  Google Scholar 

  • Davies, J.A., Harrison, R.A., Perry, C.H., Möstl, C., Lugaz, N., Rollett, T., Davis, C.J., Crothers, S.R., Temmer, M., Eyles, C.J., Savani, N.P.: 2012, A self-similar expansion model for use in solar wind transient propagation studies. Astrophys. J. 750, 23. doi: 10.1088/0004-637X/750/1/23 .

    Article  ADS  Google Scholar 

  • Eyles, C.J., Harrison, R.A., Davis, C.J., Waltham, N.R., Shaughnessy, B.M., Mapson-Menard, H.C.A., Bewsher, D., Crothers, S.R., Davies, J.A., Simnett, G.M., Howard, R.A., Moses, J.D., Newmark, J.S., Socker, D.G., Halain, J.-P., Defise, J.-M., Mazy, E., Rochus, P.: 2009, The heliospheric imagers onboard the STEREO mission. Solar Phys. 254, 387 – 445. doi: 10.1007/s11207-008-9299-0 .

    Article  ADS  Google Scholar 

  • Gallagher, P.T., Lawrence, G.R., Dennis, B.R.: 2003, Rapid acceleration of a coronal mass ejection in the low corona and implications for propagation. Astrophys. J. Lett. 588, L53. doi: 10.1086/375504 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2001, Radio signatures of coronal mass ejection interaction: coronal mass ejection cannibalism? Astrophys. J. Lett. 548, L91. doi: 10.1086/318939 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Davila, J.M., St. Cyr, O.C., Sittler, E.C., Auchère, F., Duvall, T.L., Hoeksema, J.T., Maksimovic, M., MacDowall, R.J., Szabo, A., Collier, M.R.: 2011, Earth-affecting solar causes observatory (EASCO): a potential international living with a star mission from Sun–Earth L5. J. Atmos. Solar-Terr. Phys. 73, 658 – 663. doi: 10.1016/j.jastp.2011.01.013 .

    Article  ADS  Google Scholar 

  • Harrison, R.A., Davies, J.A., Rouillard, A.P., Davis, C.J., Eyles, C.J., Bewsher, D., Crothers, S.R., Howard, R.A., Sheeley, N.R., Vourlidas, A., Webb, D.F., Brown, D.S., Dorrian, G.D.: 2009, Two years of the STEREO heliospheric imagers. Invited review. Solar Phys. 256, 219 – 237. doi: 10.1007/s11207-009-9352-7 .

    Article  ADS  Google Scholar 

  • Howard, T.A., DeForest, C.E.: 2012, The Thomson surface. I. Reality and myth. Astrophys. J. 752, 130. doi: 10.1088/0004-637X/752/2/130 .

    Article  ADS  Google Scholar 

  • Howard, T.A., Tappin, S.J.: 2009, Interplanetary coronal mass ejections observed in the heliosphere: 1. Review of theory. Space Sci. Rev. 147, 31 – 54. doi: 10.1007/s11214-009-9542-5 .

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67 – 115. doi: 10.1007/s11214-008-9341-4 .

    Article  ADS  Google Scholar 

  • Hundhausen, A.J.: 1993, Sizes and locations of coronal mass ejections – SMM observations from 1980 and 1984 – 1989. J. Geophys. Res. 981, 13177. doi: 10.1029/93JA00157 .

    Article  ADS  Google Scholar 

  • Kahler, S.W., Webb, D.F.: 2007, V arc interplanetary coronal mass ejections observed with the solar mass ejection imager. J. Geophys. Res. 112, 9103. doi: 10.1029/2007JA012358 .

    Article  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136, 5 – 16. doi: 10.1007/s11214-007-9277-0 .

    Article  ADS  Google Scholar 

  • Liu, Y., Davies, J.A., Luhmann, J.G., Vourlidas, A., Bale, S.D., Lin, R.P.: 2010, Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU. Astrophys. J. Lett. 710, L82. doi: 10.1088/2041-8205/710/1/L82 .

    Article  ADS  Google Scholar 

  • Lugaz, N.: 2010, Accuracy and limitations of fitting and stereoscopic methods to determine the direction of coronal mass ejections from heliospheric imagers observations. Solar Phys. 267, 411 – 429. doi: 10.1007/s11207-010-9654-9 .

    Article  ADS  Google Scholar 

  • Lugaz, N., Roussev, I.I., Gombosi, T.I.: 2011, Determining CME parameters by fitting heliospheric observations: numerical investigation of the accuracy of the methods. Adv. Space Res. 48, 292 – 299. doi: 10.1016/j.asr.2011.03.015 .

    Article  ADS  Google Scholar 

  • Lugaz, N., Vourlidas, A., Roussev, I.I.: 2009, Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere – application to CME-CME interaction. Ann. Geophys. 27, 3479 – 3488.

    Article  ADS  Google Scholar 

  • Lugaz, N., Vourlidas, A., Roussev, I.I., Morgan, H.: 2009, Solar-terrestrial simulation in the STEREO era: the 24 – 25 January 2007 eruptions. Solar Phys. 256, 269 – 284. doi: 10.1007/s11207-009-9339-4 .

    Article  ADS  Google Scholar 

  • Luhmann, J.G., Curtis, D.W., Schroeder, P., McCauley, J., Lin, R.P., Larson, D.E., Bale, S.D., Sauvaud, J.-A., Aoustin, C., Mewaldt, R.A., Cummings, A.C., Stone, E.C., Davis, A.J., Cook, W.R., Kecman, B., Wiedenbeck, M.E., von Rosenvinge, T., Acuna, M.H., Reichenthal, L.S., Shuman, S., Wortman, K.A., Reames, D.V., Mueller-Mellin, R., Kunow, H., Mason, G.M., Walpole, P., Korth, A., Sanderson, T.R., Russell, C.T., Gosling, J.T.: 2008, STEREO IMPACT investigation goals, measurements, and data products overview. Space Sci. Rev. 136, 117 – 184. doi: 10.1007/s11214-007-9170-x .

    Article  ADS  Google Scholar 

  • Möstl, C., Davies, J.A.: 2012, Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts. Solar Phys. doi: 10.1007/s11207-012-9978-8 .

  • Möstl, C., Farrugia, C.J., Temmer, M., Miklenic, C., Veronig, A.M., Galvin, A.B., Leitner, M., Biernat, H.K.: 2009a, Linking remote imagery of a coronal mass ejection to its in situ signatures at 1 AU. Astrophys. J. Lett. 705, L180. doi: 10.1088/0004-637X/705/2/L180 .

    Article  ADS  Google Scholar 

  • Möstl, C., Farrugia, C.J., Miklenic, C., Temmer, M., Galvin, A.B., Luhmann, J.G., Kilpua, E.K.J., Leitner, M., Nieves-Chinchilla, T., Veronig, A., Biernat, H.K.: 2009b, Multispacecraft recovery of a magnetic cloud and its origin from magnetic reconnection on the Sun. J. Geophys. Res. 114, 4102. doi: 10.1029/2008JA013657 .

    Article  Google Scholar 

  • Möstl, C., Temmer, M., Rollett, T., Farrugia, C.J., Liu, Y., Veronig, A.M., Leitner, M., Galvin, A.B., Biernat, H.K.: 2010, STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5 – 7 April 2010. Geophys. Res. Lett. 372, L24103. doi: 10.1029/2010GL045175 .

    Google Scholar 

  • Möstl, C., Rollett, T., Lugaz, N., Farrugia, C.J., Davies, J.A., Temmer, M., Veronig, A.M., Harrison, R.A., Crothers, S., Luhmann, J.G., Galvin, A.B., Zhang, T.L., Baumjohann, W., Biernat, H.K.: 2011, Arrival time calculation for interplanetary coronal mass ejections with circular fronts and application to STEREO observations of the 2009 February 13 eruption. Astrophys. J. 741, 34. doi: 10.1088/0004-637X/741/1/34 .

    Article  ADS  Google Scholar 

  • Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C. Jr., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the Wind spacecraft. Space Sci. Rev. 71, 55 – 77.

    Article  ADS  Google Scholar 

  • Rollett, T., Möstl, C., Temmer, M., Veronig, A.M., Farrugia, C.J., Biernat, H.K.: 2012, Constraining the kinematics of coronal mass ejections in the inner heliosphere with in-situ signatures. Solar Phys. 276, 293 – 314. doi: 10.1007/s11207-011-9897-0 .

    Article  ADS  Google Scholar 

  • Rouillard, A.P.: 2011, Relating white light and in situ observations of coronal mass ejections: a review. J. Atmos. Solar-Terr. Phys. 73, 1201 – 1213. doi: 10.1016/j.jastp.2010.08.015 .

    Article  ADS  Google Scholar 

  • Rouillard, A.P., Davies, J.A., Forsyth, R.J., Rees, A., Davis, C.J., Harrison, R.A., Lockwood, M., Bewsher, D., Crothers, S.R., Eyles, C.J., Hapgood, M., Perry, C.H.: 2008, First imaging of corotating interaction regions using the STEREO spacecraft. Geophys. Res. Lett. 35, 10110. doi: 10.1029/2008GL033767 .

    Article  ADS  Google Scholar 

  • Sheeley, N.R., Walters, J.H., Wang, Y.-M., Howard, R.A.: 1999, Continuous tracking of coronal outflows: two kinds of coronal mass ejections. J. Geophys. Res. 104, 24739 – 24768. doi: 10.1029/1999JA900308 .

    Article  ADS  Google Scholar 

  • Sheeley, N.R. Jr., Herbst, A.D., Palatchi, C.A., Wang, Y.-M., Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Burlaga, L.F., Davila, J.M., Thompson, W.T., St Cyr, O.C., Harrison, R.A., Davis, C.J., Eyles, C.J., Halain, J.P., Wang, D., Rich, N.B., Battams, K., Esfandiari, E., Stenborg, G.: 2008, Heliospheric images of the solar wind at Earth. Astrophys. J. 675, 853 – 862. doi: 10.1086/526422 .

    Article  ADS  Google Scholar 

  • Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The advanced composition explorer. Space Sci. Rev. 86, 1 – 22. doi: 10.1023/A:1005082526237 .

    Article  ADS  Google Scholar 

  • Temmer, M., Rollett, T., Möstl, C., Veronig, A.M., Vršnak, B., Odstrčil, D.: 2011, Influence of the ambient solar wind flow on the propagation behavior of interplanetary coronal mass ejections. Astrophys. J. 743, 101. doi: 10.1088/0004-637X/743/2/101 .

    Article  ADS  Google Scholar 

  • Temmer, M., Vršnak, B., Rollett, T., Bein, B., de Koning, C.A., Liu, Y., Bosman, E., Davies, J.A., Möstl, C., Žic, T., Veronig, A.M., Bothmer, V., Harrison, R., Nitta, N., Bisi, M., Flor, O., Eastwood, J., Odstrcil, D., Forsyth, R.: 2012, Characteristics of kinematics of a coronal mass ejection during the 2010 August 1 CME-CME interaction event. Astrophys. J. 749, 57. doi: 10.1088/0004-637X/749/1/57 .

    Article  ADS  Google Scholar 

  • Tóth, G., Sokolov, I.V., Gombosi, T.I., Chesney, D.R., Clauer, C.R., De Zeeuw, D.L., Hansen, K.C., Kane, K.J., Manchester, W.B., Oehmke, R.C., Powell, K.G., Ridley, A.J., Roussev, I.I., Stout, Q.F., Volberg, O., Wolf, R.A., Sazykin, S., Chan, A., Yu, B., Kóta, J.: 2005, Space weather modeling framework: a new tool for the space science community. J. Geophys. Res. 110, 12226. doi: 10.1029/2005JA011126 .

    Article  Google Scholar 

  • Vourlidas, A., Howard, R.A.: 2006, The proper treatment of coronal mass ejection brightness: a new methodology and implications for observations. Astrophys. J. 642, 1216 – 1221. doi: 10.1086/501122 .

    Article  ADS  Google Scholar 

  • Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T., Möstl, C., Veronig, A., Čalogović, J., Dumbović, M., Lulić, S., Moon, Y.-J., Shanmugaraju, A.: 2012, Propagation of interplanetary coronal mass ejections: the drag-based model. Solar Phys. doi: 10.1007/s11207-012-0035-4 .

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1990, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726 – 732. doi: 10.1086/168805 .

    Article  ADS  Google Scholar 

  • Williams, A.O., Davies, J.A., Milan, S.E., Rouillard, A.P., Davis, C.J., Perry, C.H., Harrison, R.A.: 2009, Deriving solar transient characteristics from single spacecraft STEREO/HI elongation variations: a theoretical assessment of the technique. Ann. Geophys. 27, 4359 – 4368. doi: 10.5194/angeo-27-4359-2009 .

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K.P., Howard, R.A., Kundu, M.R., White, S.M.: 2001, On the temporal relationship between coronal mass ejections and flares. Astrophys. J. 559, 452 – 462. doi: 10.1086/322405 .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has received funding from the European Commission FP7 Project n 263252 [COMESEP]. MT acknowledges the Austrian Science Fund (FWF): V195-N16. This research was supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme. NL was supported by NSF AGS1239704 and NASA NNX12AB28G. Simulation results were obtained using the Space Weather Modeling Framework, developed by the Center for Space Environment Modeling, at the University of Michigan with funding support from NASA ESS, NASA ESTO-CT, NSF KDI, and DoD MURI. We thank the STEREO SECCHI/IMPACT/PLASTIC teams for their open data policy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Rollett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rollett, T., Temmer, M., Möstl, C. et al. Assessing the Constrained Harmonic Mean Method for Deriving the Kinematics of ICMEs with a Numerical Simulation. Sol Phys 283, 541–556 (2013). https://doi.org/10.1007/s11207-013-0246-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-013-0246-3

Keywords

Navigation