Skip to main content
Log in

Instrumental and Observational Artifacts in Quiet Sun Magnetic Flux Cancellation Functions

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Under the assumption that the photospheric quiet Sun magnetic field is turbulent, the cancellation function has previously been used to estimate the true, resolution-independent mean, unsigned vertical flux 〈|B z |〉true. We show that the presence of network elements, noise, and seeing complicate the measurement of accurate cancellation functions and their power law exponents κ. Failure to exclude network elements previously led to estimates that were too low for both the cancellation exponent κ and 〈|B z |〉true. However, both κ and 〈|B z |〉true are overestimated due to noise in magnetograms. While no conclusive value can be derived with data from current instruments, our Hinode/SP results of κ⪅0.38 and 〈|B z |〉true⪅270 gauss can be taken as upper bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Abramenko, V.: 2003, Pre-flare changes in current helicity and turbulent regime of the photospheric magnetic field. Adv. Space Res. 32, 1937.

    Article  ADS  Google Scholar 

  • Abramenko, V., Yurchyshyn, V.: 2010a, Intermittency and multifractality spectra of the magnetic field in solar active regions. Astrophys. J. 722, 122.

    Article  ADS  Google Scholar 

  • Abramenko, V., Yurchyshyn, V.: 2010b, Magnetic energy spectra in solar active regions. Astrophys. J. 720, 717.

    Article  ADS  Google Scholar 

  • Brandenburg, A.: 1995, Flux tubes and scaling in MHD dynamo simulations. Chaos Solitons Fractals 5, 2023.

    Article  ADS  Google Scholar 

  • Brandenburg, A., Procaccia, I., Segel, D., Vincent, A.: 1992, Fractal level sets and multifractal fields in direct simulations of turbulence. Phys. Rev. A 46, 4819.

    Article  ADS  Google Scholar 

  • Cadavid, A.C., Lawrence, J.K., Ruzmaikin, A.A., Kayleng-Knight, A.: 1994, Multifractal models of small-scale solar magnetic fields. Astrophys. J. 429, 391.

    Article  ADS  Google Scholar 

  • Frisch, U.: 1995, Turbulence. The Legacy of A.N. Kolmogorov. Cambridge University Press. Cambridge, 136–148, 185–189.

    MATH  Google Scholar 

  • Georgoulis, M.K.: 2012, Are solar active regions with major flares more fractal, multifractal, or turbulent than others? Solar Phys. 276, 161.

    Article  ADS  Google Scholar 

  • Goldreich, P., Sridhar, S.: 1995, Toward a theory of interstellar turbulence. 2: Strong Alfvénic turbulence. Astrophys. J. 438, 763.

    Article  ADS  Google Scholar 

  • Goode, P.R., Yurchyshyn, V., Cao, W., Abramenko, V., Andic, A., Ahn, K., Chae, J.: 2010, Highest resolution observations of the quietest Sun. Astrophys. J. Lett. 714, L31.

    Article  ADS  Google Scholar 

  • Iroshnikov, P.S.: 1964, Turbulence of a conducting fluid in a strong magnetic field. Soviet Astron. 7, 566.

    MathSciNet  ADS  Google Scholar 

  • Janßen, K., Vögler, A., Kneer, F.: 2003, On the fractal dimension of small-scale magnetic structures in the Sun. Astron. Astrophys. 409, 1127.

    Article  ADS  Google Scholar 

  • Kraichnan, R.H.: 1965, Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 1385.

    Article  MathSciNet  ADS  Google Scholar 

  • Lee, E., Brachet, M.E., Pouquet, A., Mininni, P.D., Rosenberg, D.: 2010, Lack of universality in decaying magnetohydrodynamic turbulence. Phys. Rev. E 81, 016318.

    Article  ADS  Google Scholar 

  • Lites, B.W., Kubo, M., Socas-Navarro, H., Berger, T., Frank, Z., Shine, R., et al.: 2008, The horizontal magnetic flux of the quiet-Sun internetwork as observed with the Hinode Spectro-Polarimeter. Astrophys. J. 672, 1237.

    Article  ADS  Google Scholar 

  • Manso Sainz, R., Landi Degl’Innocenti, E., Trujillo Bueno, J.: 2006, A qualitative interpretation of the second solar spectrum of Ce ii. Astron. Astrophys. 447, 1125.

    Article  ADS  Google Scholar 

  • Moll, R., Pietarila Graham, J., Pratt, J., Cameron, R.H., Müller, W.-C., Schüssler, M.: 2011, Universality of the small-scale dynamo mechanism. Astrophys. J. 736, 36.

    Article  ADS  Google Scholar 

  • Ott, E., Du, Y., Sreenivasan, K.R., Juneja, A., Suri, A.K.: 1992, Sign-singular measures – fast magnetic dynamos, and high-Reynolds-number fluid turbulence. Phys. Rev. Lett. 69, 2654.

    Article  ADS  Google Scholar 

  • Pietarila Graham, J., Cameron, R., Schüssler, M.: 2010, Turbulent small-scale dynamo action in solar surface simulations. Astrophys. J. 714, 1606.

    Article  ADS  Google Scholar 

  • Pietarila Graham, J., Danilovic, S., Schüssler, M.: 2009, Turbulent magnetic fields in the quiet Sun: implications of Hinode observations and small-scale dynamo simulations. Astrophys. J. 693, 1728.

    Article  ADS  Google Scholar 

  • Pietarila Graham, J., Mininni, P.D., Pouquet, A.: 2005, Cancellation exponent and multifractal structure in two-dimensional magnetohydrodynamics: direct numerical simulations and Lagrangian averaged modeling. Phys. Rev. E 72, 045301.

    Article  ADS  Google Scholar 

  • Pietarila Graham, J., Mininni, P.D., Pouquet, A.: 2011, High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model. Phys. Rev. E 84, 016314.

    Article  ADS  Google Scholar 

  • Sánchez Almeida, J., Martínez González, M.: 2011, The magnetic fields of the quiet Sun. In: Kuhn, J.R., Harrington, D.M., Lin, H., Berdyugina, S.V., Trujillo-Bueno, J., Keil, S.L., Rimmele, T. (eds.) Solar Polarization 6, ASP Conf. Ser. 437, 451.

    Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., et al.: 1995, The Solar Oscillations Investigation – Michelson Doppler Imager. Solar Phys. 162, 129.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., et al.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207.

    Article  ADS  Google Scholar 

  • Solanki, S.K., Barthol, P., Danilovic, S., Feller, A., Gandorfer, A., Hirzberger, J., et al.: 2010, SUNRISE: Instrument, mission, data, and first results. Astrophys. J. Lett. 723, L127.

    Article  ADS  Google Scholar 

  • Sorriso-Valvo, L., Carbone, V., Noullez, A., Politano, H., Pouquet, A., Veltri, P.: 2002, Analysis of cancellation in two-dimensional magnetohydrodynamic turbulence. Phys. Plasmas 9, 89.

    Article  MathSciNet  ADS  Google Scholar 

  • Sorriso-Valvo, L., Abramenko, V., Carbone, V., Noullez, A., Politano, H., Pouquet, A., Veltri, P., Yurchyshyn, V.: 2003, Cancellations analysis of photospheric magnetic structures and flares. Mem. Soc. Astron. Ital. 74, 631.

    ADS  Google Scholar 

  • Sorriso-Valvo, L., Carbone, V., Veltri, P., Abramenko, V.I., Noullez, A., Politano, H., Pouquet, A., Yurchyshyn, V.: 2004, Topological changes of the photospheric magnetic field inside active regions: A prelude to flares? Planet. Space Sci. 52, 937.

    Article  ADS  Google Scholar 

  • Stenflo, J.O.: 2011, Collapsed, uncollapsed, and hidden magnetic flux on the quiet Sun. Astron. Astrophys. 529, A42.

    Article  ADS  Google Scholar 

  • Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., et al.: 2008, The solar optical telescope for the Hinode mission: an overview. Solar Phys. 249, 167.

    Article  ADS  Google Scholar 

Download references

Acknowledgement

JPG gratefully acknowledges the support of the U.S. Department of Energy through the LANL/LDRD Program for this work. Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in cooperation with ESA and NSC (Norway) data provided by the SOHO/MDI consortium. SOHO is a mission of international cooperation between ESA and NASA. SDO is a mission for NASA’s Living With a Star program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pietarila.

Appendix

Appendix

For a completely self-similar field, knowledge of net flux at any scale and of the power law scaling exponent implies knowledge of net flux at all scales and, hence, the unsigned flux. This is most easily seen in the example of a vertical random field f z . For a random field, the integral over an area is proportional to the square root of the area (random walk),

(8)

while the integral over a strictly positive field is proportional to its area,

(9)

Therefore,

(10)

and we identify κ=1 for pure noise. For scales smaller than the correlation length of the noise, the net flux is equal to the unsigned flux,

(11)

and for larger scales,

(12)

The constant C is determined by equating Equations (11) and (12) at the correlation length, l=l 0:

(13)

This power law dependence, Equation (13), is shown in Figure 13. This means that the unsigned flux can be exactly calculated given the net flux at any scale and the scale at the end of the power law, l 0,

(14)

for a random field. For any other purely self-similar field with cancellation exponent κ,

(15)

For the extreme case of a unipolar field, κ=0 and Flux l =Flux0 for all scales l. In general, 0≤κ≤1.

Figure 13
figure 13

Ratio of net flux to unsigned flux χ(l) vs. scale (l) for noise with correlation length l 0. The ratio is given by \(\frac{l_{0}}{l}\) (dashed line).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietarila, A., Pietarila Graham, J. Instrumental and Observational Artifacts in Quiet Sun Magnetic Flux Cancellation Functions. Sol Phys 282, 389–404 (2013). https://doi.org/10.1007/s11207-012-0140-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-0140-4

Keywords

Navigation