Skip to main content
Log in

Estimating functions for noisy observations of ergodic diffusions

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

In this article, general estimating functions for ergodic diffusions sampled at high frequency with noisy observations are presented. The theory is formulated in terms of approximate martingale estimating functions based on local means of the observations, and simple conditions are given for rate optimality. The estimation of the diffusion parameter is faster than the estimation of the drift parameter, and the rate of convergence is classical for the drift parameter but not classical for the diffusion parameter. The link with specific minimum contrast estimators is established, as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bibby BM, Sørensen M (1995) Martingale estimation functions for discretely observed diffusion processes. Bernoulli 1(1–2):17–39

    Article  MathSciNet  MATH  Google Scholar 

  • Favetto B (2014) Parameter estimation by contrast minimization for noisy observations of a diffusion process. Statistics 48(6):1344–1370

    Article  MathSciNet  MATH  Google Scholar 

  • Florens-Zmirou D (1989) Approximate discrete-time schemes for statistics of diffusion processes. Statistics 20(4):547–557

    Article  MathSciNet  MATH  Google Scholar 

  • Genon-Catalot V (1990) Maximum contrast estimation for diffusion processes from discrete observations. Statistics 21(1):99–116

    Article  MathSciNet  MATH  Google Scholar 

  • Genon-Catalot V, Jacod J (1993) On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Ann Inst Henri Poincaré Probab Stat 29(1):119–151

    MathSciNet  MATH  Google Scholar 

  • Gloter A (2006) Parameter estimation for a discretely observed integrated diffusion process. Scand J Stat 33(1):83–104

    Article  MathSciNet  MATH  Google Scholar 

  • Gloter A, Jacod J (2001a) Diffusions with measurement errors. I. Local asymptotic normality. ESAIM Probab Stat 5:225–242 (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  • Gloter A, Jacod J (2001b) Diffusions with measurement errors. II. Optimal estimators. ESAIM Probab Stat 5:243–260 (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  • Hall P, Heyde CC (1980) Probability and mathematical statistics. Martingale limit theory and its application. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York

    Google Scholar 

  • Jacobsen M (2002) Optimality and small \(\Delta \)-optimality of martingale estimating functions. Bernoulli 8(5):643–668

    MathSciNet  MATH  Google Scholar 

  • Jacod J, Li Y, Mykland PA, Podolskij M, Vetter M (2009) Microstructure noise in the continuous case: the pre-averaging approach. Stoch Process Appl 119(7):2249–2276

    Article  MathSciNet  MATH  Google Scholar 

  • Kessler M (2000) Simple and explicit estimating functions for a discretely observed diffusion process. Scand J Stat 27(1):65–82

    Article  MathSciNet  MATH  Google Scholar 

  • Kessler M, Sørensen M (1999) Estimating equations based on eigenfunctions for a discretely observed diffusion process. Bernoulli 5(2):299–314

    Article  MathSciNet  MATH  Google Scholar 

  • Schmisser E (2010) Non-parametric estimation of the diffusion coefficient from noisy data. Preprint MAP5 2010–01: http://hal.archives-ouvertes.fr/hal-00443993

  • Schmisser E (2011) Nonparametric drift estimation for diffusions from noisy data. Stat Decis 28(2):119–150

    MathSciNet  MATH  Google Scholar 

  • Sørensen M (2007) Efficient estimation for ergodic diffusions sampled at high frequency. CREATES Research Paper, (2007–46). http://www.math.ku.dk/~michael/efficient.pdf

  • Sørensen M (2012) Estimating functions for diffusion-type processes. Stat Methods Stoch differ Equ 124:1–107

    MathSciNet  MATH  Google Scholar 

  • Yoshida N (1992) Estimation for diffusion processes from discrete observation. J Multivar Anal 41(2):220–242

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang L, Mykland PA, Aït-Sahalia Y (2005) A tale of two time scales: determining integrated volatility with noisy high-frequency data. J Am Stat Assoc 100(472):1394–1411

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author wishes to adress many thanks to Pr. Valentine Genon-Catalot, for her help, her advice and suggestions about this article. He thanks also the anonymous referees for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Favetto.

Appendix

Appendix

Define the following random variables which appear in some expansions:

$$\begin{aligned} \zeta _{j+1,N}= & {} \frac{1}{p_N} \sum _{i=0}^{p_N - 1} \int _{j \Delta _N + i \delta _N}^{(j+1) \Delta _N} d B_s, \end{aligned}$$
(13)
$$\begin{aligned} \zeta _{j+2,N}'= & {} \frac{1}{p_N} \sum _{i=0}^{p_N - 1} \int _{(j+1) \Delta _N}^{(j+1) \Delta _N + i \delta _N} d B_s. \end{aligned}$$
(14)

Notice that

$$\begin{aligned} \zeta _{j+1,N}= & {} \frac{1}{p_N} \sum _{k=0}^{p_N - 1} (k+1) \int _{j \Delta _N + k \delta _N}^{j \Delta _N + (k+1) \delta _N} dB_s, \end{aligned}$$
(15)
$$\begin{aligned} \zeta _{j+2,N}'= & {} \frac{1}{p_N} \sum _{k=0}^{p_N - 1} (p_N - 1 - k) \int _{(j+1)\Delta _N + k \delta _N }^{(j+1) \Delta _N + (k+1) \delta _N} dB_s. \end{aligned}$$
(16)

Lemma 4

The random variables \(\zeta _{j+1,N}\) and \(\zeta _{j+1,N}'\) are \({{\mathcal {G}}}_{(j+1) \Delta _N}\)-mesurable, and \(\zeta _{j+2,N}'\) is independent of \({{\mathcal {G}}}_{(j+1)\Delta _N}\). Moreover,

$$\begin{aligned} {{\mathbb {E}}}(\zeta _{j,N} | {{\mathcal {G}}}_j^N )= & {} 0 \\ {{\mathbb {E}}}(\zeta _{j+1,N}' | {{\mathcal {G}}}_j^N )= & {} 0 \end{aligned}$$
$$\begin{aligned} {{\mathbb {E}}}((\zeta _{j+1,N})^2 | {{\mathcal {G}}}_j^N )= & {} \Delta _N \left( \frac{1}{3} + \frac{1}{2 p_N} + \frac{1}{6 p_N^2} \right) \\ {{\mathbb {E}}}((\zeta _{j+1,N}')^2 | {{\mathcal {G}}}_j^N )= & {} \Delta _N \left( \frac{1}{3} - \frac{1}{2 p_N} + \frac{1}{6 p_N^2} \right) \\ {{\mathbb {E}}}(\zeta _{j+1,N} \zeta _{j+1,N}' | {{\mathcal {G}}}_j^N )= & {} \frac{\Delta _N}{6} \left( 1 -\frac{1}{p_N^2} \right) \end{aligned}$$

In Favetto (2014), several properties of \(Y_{\bullet }^j\) and some results of convergence in probability for functionals of the blocks have been established. Recall that the random variables \(\zeta _{j,N}\) and \(\zeta _{j+1,N}'\) are defined in (4.8), and Lemma 6 is used to establish convergence in probability results.

Proposition 1

Under (A1), we have for \(j \le k_N - 1 \),

$$\begin{aligned} Y_{\bullet }^{j} - X_{j \Delta _N} = \sigma (X_{j \Delta _N}) \sqrt{\Delta _N} \xi _{j,N}' + e_{j,N}' + \rho \varepsilon _{\bullet }^j \end{aligned}$$
(17)

with \(|{{\mathbb {E}}}(e_{j,N}' |{{\mathcal {H}}}_j^N )| \le c \Delta _N (1 + |X_{j \Delta _N}|)\) and

$$\begin{aligned} {{\mathbb {E}}}( {e_{j,N}'}^2 | {{\mathcal {H}}}_j^N ) \le c \Delta _N^2 (1 + |X_{j \Delta _N}|^4), \qquad {{\mathbb {E}}}( {e_{j,N}'}^4 | {{\mathcal {H}}}_j^N ) \le c \Delta _N^3 (1 + |X_{j \Delta _N}|^4). \end{aligned}$$

If moreover (A5) holds, for \( k \le 8\), there exists \(c > 0\) such that, for \(j \le k_N - 1\):

$$\begin{aligned} {{\mathbb {E}}}\left( \left. |Y_{\bullet }^j - X_{j \Delta _N} |^k \right| {{\mathcal {H}}}_j^N \right) \le C \left( \Delta _N^{k/2} (1 + | X_{j \Delta _N}|^{k}) + \rho ^k {{\mathbb {E}}}\left( | \varepsilon _{\bullet }^j |^{k} \right) \right) . \end{aligned}$$
(18)

Proposition 2

Under Assumptions (A1)-(A2) and (A5), we have

$$\begin{aligned} Y_{\bullet }^{j+1} - Y_{\bullet }^j = \Delta _N b(X_{j \Delta _N}) + \sigma ( X_{j \Delta _N}) (\zeta _{j+1,N} + \zeta _{j+2,N}') + \tau _{j,N} + \rho (\varepsilon _{\bullet }^{j+1} - \varepsilon _{\bullet }^j) \end{aligned}$$

where \(\tau _{j,N}\) is \({{\mathcal {H}}}_{j+2}^N\)-mesurable, and there exists a constant c such that

$$\begin{aligned}&\displaystyle | {{\mathbb {E}}}(\tau _{j,N} | {{\mathcal {G}}}_j^N ) | \le c \Delta _N ( \Delta _N (1 + |X_{j \Delta _N}|^3) + \rho ^2 \sqrt{{{\mathbb {E}}}( (\varepsilon _{\bullet }^j)^4) }) ,\\&\displaystyle {{\mathbb {E}}}(\tau _{j,N}^2 | {{\mathcal {G}}}_j^N ) \le c \Delta _N ( 1 + |X_{j \Delta _N}|^2 + \rho ^2 {{\mathbb {E}}}( (\varepsilon _{\bullet }^j)^2)) (\Delta _N (1 + |X_{j \Delta _N} |^4) + \rho ^2 \sqrt{{{\mathbb {E}}}( (\varepsilon _{\bullet }^j)^4)}) , \\&\displaystyle {{\mathbb {E}}}( \tau _{j,N}^4 | {{\mathcal {G}}}_{j}^N ) \le c ( 1 + |X_{j \Delta _N}|^4 + \rho ^4 {{\mathbb {E}}}( ( \varepsilon _{\bullet }^j)^4) ) (\Delta _N^4 (1 + |X_{j \Delta _N}|^4 )+ \rho ^4 \sqrt{ {{\mathbb {E}}}( (\varepsilon _{\bullet }^j )^8)}) ,\\&\displaystyle | {{\mathbb {E}}}( \tau _{j,N} \zeta _{j+1,N} | {{\mathcal {G}}}_j^N ) | \le c \Delta _N ( 1 + |X_{j \Delta _N}|^2 + \rho ^2 {{\mathbb {E}}}( (\varepsilon _{\bullet }^j)^2) ) ( \Delta _N ( 1 + |X_{j \Delta _N}|^4) + \rho ^2 \sqrt{{{\mathbb {E}}}((\varepsilon _{\bullet }^j)^4)}) , \\&\displaystyle | {{\mathbb {E}}}( \tau _{j,N} \zeta _{j+2,N}' | {{\mathcal {G}}}_j^N ) | \le c \Delta _N ( 1 + |X_{j \Delta _N}|^2 + \rho ^2 {{\mathbb {E}}}( (\varepsilon _{\bullet }^j)^2) ) ( \Delta _N ( 1 + |X_{j \Delta _N}|^4) + \rho ^2 \sqrt{{{\mathbb {E}}}((\varepsilon _{\bullet }^j)^4)}. \end{aligned}$$

Lemma 5

Assume (A1)-(A3). Let \(f \in \mathcal {C}^1 ({{\mathbb {R}}}\times O )\), where O is an open neighbourhood of \(\varTheta \), satisfy

$$\begin{aligned} \sup _{\theta \in \varTheta } \{ |f(x,\theta ) | + | \partial _x f (x, \theta )| + |\partial _{\theta } f(x,\theta )| \} \le C ( 1 + |x|) \end{aligned}$$

then:

$$\begin{aligned} \frac{1}{k_N} \sum _{j=0}^{k_N-1} f(X_{j \Delta _N}, \theta ) \underset{k_N \rightarrow \infty }{\longrightarrow } \nu _0 (f(.,\theta )) \end{aligned}$$
(19)

uniformly in \(\theta \), in probability.

Theorem 6

Assume (A1)-(A5).

  1. 1.

    If \(\delta _N = p_N^{-\alpha }\) with \(\alpha \in (1,2)\) (\(\Delta _N = p_N^{1-\alpha }\)) and (B1) (\(\rho = \rho >0\)), then

    $$\begin{aligned} \bar{Q}_N (f(.,\theta )) = \frac{1}{k_N \Delta _N} \sum _{j=1}^{k_N - 2} f (Y_{\bullet }^{j-1} , \theta ) (Y_{\bullet }^{j+1} - Y_{\bullet }^j)^2 \overset{\mathbb {P}}{\longrightarrow } \frac{2}{3} \nu _0 (f(., \theta ) \sigma ^2 ), \end{aligned}$$
    (20)
  2. 2.

    If \(\delta _N = p_N^{-2}\) (\(\Delta _N = \frac{1}{p_N}\)) and (B1) (\(\rho = \rho >0\)), then

    $$\begin{aligned} \bar{Q}_N (f(.,\theta )) \overset{\mathbb {P}}{\longrightarrow } \frac{2}{3} \nu _0 (f(., \theta ) \sigma ^2 ) + 2 \rho ^2 \nu _0 (f (. , \theta )), \end{aligned}$$
    (21)
  3. 3.

    If \(\delta _N = p_N^{ - \alpha }\), \( \alpha \in (1,2]\) with (B2) (\(\rho \rightarrow 0\)), then

    $$\begin{aligned} \bar{Q}_N (f(.,\theta )) \overset{\mathbb {P}}{\longrightarrow } \frac{2}{3} \nu _0 (f (. , \theta ) \sigma ^2 ), \end{aligned}$$
    (22)

where all the convergences in probability are uniform in \(\theta \in \varTheta \), as \(N \rightarrow \infty \), with \(\delta _N \rightarrow 0\), \(p_N \rightarrow \infty \), \(k_N \rightarrow \infty \), \(\Delta _N \rightarrow 0\) and \(N \delta _N \rightarrow \infty \).

To study convergences in probability, an auxiliary result from Genon-Catalot and Jacod (1993) is reproduced here.

Lemma 6

Let \(\chi _j^N\), U be random variables, with \(\chi _j^N\) being \({{\mathcal {G}}}_j^N\)-measurable. The following two conditions:

$$\begin{aligned}&\sum _{j=0}^{k_N -1} {{\mathbb {E}}}(\chi _j^N | \mathcal {G}_{j-1}^N) \overset{{{\mathbb {P}}}}{\rightarrow } U , \\&\sum _{j=0}^{k_N - 1} {{\mathbb {E}}}((\chi _j^N)^2 | \mathcal {G}_{j-1}^N) \overset{{{\mathbb {P}}}}{\rightarrow } 0 \end{aligned}$$

imply \(\sum _{j=0}^{k_N - 1} \chi _j^N \overset{{{\mathbb {P}}}}{\rightarrow } U\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Favetto, B. Estimating functions for noisy observations of ergodic diffusions. Stat Inference Stoch Process 19, 1–28 (2016). https://doi.org/10.1007/s11203-015-9121-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-015-9121-1

Keywords

Navigation