Skip to main content
Log in

Hybrid multi-step estimators for stochastic differential equations based on sampled data

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

We consider an estimation problem of both drift and diffusion coefficient parameters for an ergodic diffusion process based on discrete observations. Hybrid multi-step estimators are proposed and their asymptotic properties, including convergence of moments, are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams RA, Fournier JJF (2003) Sobolev spaces. Pure and applied mathematics (Amsterdam), vol 140, 2nd edn. Elsevier/Academic Press, Amsterdam

    Google Scholar 

  • Bibby BM, Sørensen M (1995) Martingale estimating functions for discretely observed diffusion processes. Bernoulli 1:17–39

    Article  MATH  MathSciNet  Google Scholar 

  • Brouste A, Fukasawa M, Hino H, Lacus S, Kamatani K, Koike Y, Masuda H, Nomura R, Shimuzu Y, Uchida M, Yoshida N (2014) The YUIMA project : a computational framework for simulation and inference of stochastic differential equations. J Stat Softw 57:1

    Google Scholar 

  • Florens-Zmirou D (1989) Approximate discrete time schemes for statistics of diffusion processes. Statistics 20:547–557

    Article  MATH  MathSciNet  Google Scholar 

  • Genon-Catalot V, Jacod J (1993) On the estimation of the diffusion coefficient for multidimensional diffusion processes. Ann Inst Henri Poincaré Probab Stat 29:119–151

    MATH  MathSciNet  Google Scholar 

  • Gobet E (2001) Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach. Bernoulli 7:899–912

    Article  MATH  MathSciNet  Google Scholar 

  • Gobet E (2002) LAN property for ergodic diffusions with discrete observations. Ann Inst H Poincaré Probab Stat 38:711–737

    Article  MATH  MathSciNet  Google Scholar 

  • Ibragimov IA, Has’minskii RZ (1981) Statistical estimation. Springer Verlag, New York

    Book  MATH  Google Scholar 

  • Kamatani K (2014) Efficient strategy of Markov chain Monte Carlo method for high-dimensional heavy-tail distribution (in preparation)

  • Kessler M (1995) Estimation des paramètres d’une diffusion par des contrastes corrigés. C R Acad Sci Paris Ser I Math 320:359–362

    MATH  MathSciNet  Google Scholar 

  • Kessler M (1997) Estimation of an ergodic diffusion from discrete observations. Scand J Stat 24:211–229

    Article  MATH  MathSciNet  Google Scholar 

  • Kutoyants YA (1984) Parameter estimation for stochastic processes. In: Prakasa Rao BLS (ed ) Heldermann, Berlin

  • Kutoyants YuA (2004) Statistical inference for ergodic diffusion processes. Springer-Verlag, London

    Book  MATH  Google Scholar 

  • Lehmann EL (1999) Elements of large-sample theory. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Masuda H (2013a) Asymptotics for functionals of self-normalized residuals of discretely observed stochastic processes. Stoch Process Appl 123:2752–2778

    Article  MATH  MathSciNet  Google Scholar 

  • Masuda H (2013b) Convergence of Gaussian quasi-likelihood random fields for ergodic Levy driven SDE observed at high frequency. Ann Stat 41:1593–1641

    Article  MATH  MathSciNet  Google Scholar 

  • Prakasa Rao BLS (1983) Asymptotic theory for nonlinear least squares estimator for diffusion processes. Math Operationsforsch Stat Ser Stat 14:195–209

    MATH  MathSciNet  Google Scholar 

  • Prakasa Rao BLS (1988) Statistical inference from sampled data for stochastic processes. Contemp Math 80:249–284

    Article  MathSciNet  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.R-project.org/ . Accessed 19 Aug 2014

  • Robert CP, Casella G (2004) Monte Carlo statistical methods, 3rd edn. Springer Verlag, New York

    Book  MATH  Google Scholar 

  • Sørensen M (2008) Efficient estimation for ergodic diffusions sampled at high frequency. Department of Mathematical Sciences, University of Copenhagen

  • Uchida M (2010) Contrast-based information criterion for ergodic diffusion processes from discrete observations. Ann Inst Stat Math 62:161–187

    Article  MathSciNet  Google Scholar 

  • Uchida M, Yoshida N (2001) Information criteria in model selection for mixing processes. Stat Inference Stoch Process 4:73–98

    Article  MATH  MathSciNet  Google Scholar 

  • Uchida M, Yoshida N (2012) Adaptive estimation of an ergodic diffusion process based on sampled data. Stoch Process Appl 122:2885–2924

    Article  MATH  MathSciNet  Google Scholar 

  • Uchida M, Yoshida N (2013) Quasi likelihood analysis of volatility and nondegeneracy of statistical random field. Stoch Process Appl 123(7):2851–2876

    Article  MATH  MathSciNet  Google Scholar 

  • Uchida M, Yoshida N (2014) Adaptive Bayes type estimators of ergodic diffusion processes from discrete observations. Stat Inference Stoch Process 17:181–219

    Article  MATH  MathSciNet  Google Scholar 

  • Yoshida N (1992) Estimation for diffusion processes from discrete observation. J Multivar Anal 41:220–242

    Article  MATH  Google Scholar 

  • Yoshida N (2005) Polynomial type large deviation inequality and its applications. Bernoulli 11:359

    Article  MATH  MathSciNet  Google Scholar 

  • Yoshida N (2011) Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations. Ann Inst Stat Math 63:431–479

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the referees, the associate editor the editor for their valuable comments. Kamatani’s research was partially supported by JSPS KAKENHI Grant Numbers 24740062. Uchida’s research was partially supported by JSPS KAKENHI Grant Numbers 24300107, 24654024, 25245034, and by Cooperative Research Program of the Institute of Statistical Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kengo Kamatani.

Appendix: Markov chain Monte Carlo method

Appendix: Markov chain Monte Carlo method

For the target distribution \(p(x)dx\) in \({\mathbb {R}}^d\), we run the following Markov chain Monte Carlo method. Fix \(h\in (0,1)\) and \(\nu >0\), and set \(g(x)=(1+|x|^2/\nu )^{-(\nu +d)/2}\).

  • For \(m=0\). Initialize \(x\).

  • For \(m\ge 1\), iterate

    • Generate \(r\) from the inverse gamma distribution with the shape parameter \(\nu /2+d/2\) and the rate parameter \(\nu /2+|x|^2/2\).

    • Set \(y=h^{1/2} x+(1-h)^{1/2}r^{1/2}w\) where \(w\) follows the standard normal distribution.

    • Accept \(y\) as \(x\) with probability \(\min \{1,\frac{p(y)g(x)}{p(x)g(y)}\}\). Otherwise, discard \(y\).

In this paper, we set \(h=0.8\) and \(\nu =2\). This is a kind of Metropolis–Hastings algorithm. This MCMC method is efficient for complicated target distribution. The detail of this MCMC method will be described in Kamatani (2014) and is out of the scope of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamatani, K., Uchida, M. Hybrid multi-step estimators for stochastic differential equations based on sampled data. Stat Inference Stoch Process 18, 177–204 (2015). https://doi.org/10.1007/s11203-014-9107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-014-9107-4

Keywords

Mathematics Subject Classification

Navigation