Skip to main content
Log in

Passive seismic source localization via common-reflection-surface attributes

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The common-reflection-surface (CRS) stack can be viewed as a physically justified extension of the classical common-midpoint (CMP) stack, utilizing redundant information not only in a single, but in several neighboring CMP gathers. The zero-offset CRS moveout is parameterized in terms of kinematic attributes, which utilize reciprocity and raypath symmetries to describe the two-way process of the actual wave propagation in active seismic experiments by the propagation of auxiliary one-way wavefronts. For the diffraction case, only the attributes of a single one-way wavefront, originating from the diffractor are sufficient to explain the traveltime differences observed at the surface. While paraxial ray theory gives rise to a second-order approximation of the CRS traveltime, many higher-order approximations were subsequently introduced either by squaring the second-order expression or by employing principles of optics and geometry. It was recently discovered that all of these higher-order operators can be formulated either for the optical projection or in an auxiliary medium of a constant effective velocity. Utilizing this duality and the one-way nature of the CRS parameters, we present a simple data-driven stacking scheme that allows for the estimation of the a priori unknown excitation time of a passive seismic source. In addition, we demonstrate with a simple data example that the output of the suggested workflow can directly be used for subsequent focusing-based normal-incidence-point (NIP) tomography, leading to a reliable localization in depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baykulov M. and Gajewski D., 2009. Prestack seismic data enhancement with partial commonreflection- surface (CRS) stack. Geophysics, 74, V49–V58.

    Article  Google Scholar 

  • Bortfeld R., 1989. Geometrical ray theory: Rays and traveltimes in seismic systems (second-order approximations of the traveltimes). Geophysics, 54, 342–349.

    Article  Google Scholar 

  • de Bazelaire E., 1988. Normal moveout revisited - inhomogeneous media and curved interfaces. Geophysics, 53, 143–157.

    Article  Google Scholar 

  • Dell S. and Gajewski D., 2011. Common-reflection-surface-based workflow for diffraction imaging. Geophysics, 76, S187–S195.

    Article  Google Scholar 

  • Dümmong S. and Gajewski D., 2008. A multiple suppression method via CRS attributes. SEG Technical Program Expanded Abstracts 2008. 2531–2535, DOI: 10.1190/1.3063869.

    Chapter  Google Scholar 

  • Duveneck E., 2004. Velocity model estimation with data-derived wavefront attributes. Geophysics, 69, 265–274.

    Article  Google Scholar 

  • Fomel S., 2007. Velocity-independent time-domain seismic imaging using local event slopes. Geophysics, 72, S139–S147.

    Article  Google Scholar 

  • Fomel S. and Kazinnik R., 2013. Non-hyperbolic common reflection surface. Geophys. Prospect., 61, 21–27.

    Google Scholar 

  • Gajewski D., Anikiev D., Kashtan B., Tessmer E. and Vanelle C., 2007. Localization of seismic events by diffraction stacking. SEG Technical Program Expanded Abstracts 2007. 1287–1291, DOI: 10.1190/1.2792738.

    Chapter  Google Scholar 

  • Gelchinsky B., Berkovitch A. and Keydar S., 1999. Multifocusing homeomorphic imaging - part 1. Basic concepts and formulae. J. Appl. Geophys., 42, 229–242.

    Article  Google Scholar 

  • Höcht G., de Bazelaire E., Majer P. and Hubral P., 1999. Seismics and optics: hyperbolae and curvatures. J. Appl. Geophys., 42, 261–281.

    Article  Google Scholar 

  • Hubral P., 1983. Computing true amplitude reflections in a laterally inhomogeneous earth. Geophysics, 48, 1051–1062.

    Article  Google Scholar 

  • Hubral P., Schleicher J., Tygel M. and Hanitzsch C., 1993. Determination of Fresnel zones from traveltime measurements. Geophysics, 58, 703–712.

    Article  Google Scholar 

  • Jäger R., Mann J., Höcht G. and Hubral P., 2001. Common-reflection-surface stack: Image and attributes. Geophysics, 66, 97–109.

    Article  Google Scholar 

  • Kamei R. and Lumley D., 2014. Passive seismic imaging and velocity inversion using full wavefield methods. SEG Technical Program Expanded Abstracts 2014. 2273–2277, DOI: 10.1190/segam2014-0948.1.

    Chapter  Google Scholar 

  • Khoshnavaz M.J., Chambers K., Bóna A. and Urosevic M., 2015. Passive seismic localization without velocity model: application and uncertainty analysis. SEG Technical Program Expanded Abstracts 2015. 2467–2472, DOI: 10.1190/segam2015-5915362.1.

    Chapter  Google Scholar 

  • Landa E., Keydar S. and Moser T.J., 2010. Multifocusing revisited - inhomogeneous media and curved interfaces. Geophys. Prospect., 58, 925–938.

    Google Scholar 

  • Mayne W.H., 1962. Common reflection point horizontal data stacking techniques. Geophysics, 27, 927–938.

    Article  Google Scholar 

  • Nelder J.A. and Mead R., 1965. A simplex method for function minimization. Comput. J., 7, 308–313.

    Article  Google Scholar 

  • Rutledge J.T. and Phillips W.S., 2003. Hydraulic stimulation of natural fractures as revealed by induced microearthquakes, Carthage Cotton Valley gas field, east Texas. Geophysics, 68, 441–452.

    Article  Google Scholar 

  • Schleicher J., Tygel M. and Hubral P., 1993. Parabolic and hyperbolic paraxial two-point traveltimes in 3D media. Geophys. Prospect., 41, 495–513.

    Article  Google Scholar 

  • Schwarz B., Vanelle C. and Gajewski D., 2014a. Auxiliary media - a generalized view on stacking. Extended Abstract. 76th EAGE Conference & Exhibition 2014. EAGE Publications, EAGE, Houten, The Netherlands, DOI: 10.3997/2214-4609.20140988.

    Google Scholar 

  • Schwarz B., Vanelle C., Gajewski D. and Kashtan B., 2014b. Curvatures and inhomogeneities: An improved common-reflection-surface approach. Geophysics, 79, S231–S240.

    Article  Google Scholar 

  • Schwarz B., Vanelle C. and Gajewski D., 2015. Shifted hyperbola revisited - the two faces of NMO. Extended Abstract. 77th EAGE Conference & Exhibition 2015. EAGE Publications, EAGE, Houten, The Netherlands, DOI: 10.3997/2214-4609.201412954.

    Google Scholar 

  • Shearer P.M., 1990. Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity. Nature, 344, 121–126.

    Article  Google Scholar 

  • Sheriff R.E. and Geldart L.P., 1995. Exploration Seismology. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  • Taner M.T. and Koehler F., 1969. Velocity spectra - digital computer derivation applications of velocity functions. Geophysics, 34, 859–881.

    Article  Google Scholar 

  • Zhebel O., Gajewski D. and Vanelle C., 2011. Localization of seismic events in 3D media by diffraction stacking. Extended Abstract. 73rd EAGE Conference & Exhibition 2011. EAGE Publications, EAGE, Houten, The Netherlands, DOI: 10.3997/2214-4609.20149021.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Schwarz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwarz, B., Bauer, A. & Gajewski, D. Passive seismic source localization via common-reflection-surface attributes. Stud Geophys Geod 60, 531–546 (2016). https://doi.org/10.1007/s11200-015-0493-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-015-0493-x

Keywords

Navigation