Skip to main content
Log in

SGNoise - a tool for the ambient noise level analysis at superconducting gravimeter stations

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The SGNoise represents a web tool for the near real-time analysis of data from superconducting gravimeters (SGs). Gravity residuals are computed on daily basis from raw SG data (1-s sampling rate) and analysed/visualized in time and frequency domain. It fulfils the main goal of the SGNoise — automatic data quality control of continuously operating geophysical instruments which provides a helpful service for operators and data users. The data quality quantification is represented by the evaluation of ambient noise level at SG stations by spectral analysis of gravity residuals and its visualization through spectrograms and probability density functions. Among others, it provides a possibility for comparison of noise levels at SG stations as demonstrated for Pecný, Wettzell and Strasbourg stations which are included in the SGNoise service at http://oko.asu.cas.cz/grav/. The SGNoise program package is written in PHP5 scripting language using the GD Graphics Library. Procedures used for data processing and analysis are consistent with previous works on noise level analysis at SG stations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd El-Gelil M. and Pagiatakis S., 2009. Least squares self-coherence for sub-nGal signal detection in the superconducting gravimeter records. J. Geodyn., 48, 310–315.

    Article  Google Scholar 

  • Abe M., Kroner C., Förste C., Petrovic S., Barthelmes F., Weise A., Güntner A., Creutzfeldt B., Jahr T., Jentzsch G., Wilmes H. and Wziontek H., 2012. A comparison of GRACE-derived temporal gravity variations with observations of six European superconducting gravimeters. Geophys. J. Int., 191, 545–556,. DOI: 10.1111/j.1365-246X.2012.05641.x.

    Article  Google Scholar 

  • Baker T.F. and Bos M.S., 2003. Validating Earth and ocean tide models using tidal gravity measurements. Geophys. J. Int., 152, 468–485.

    Article  Google Scholar 

  • Banka D., Crossley D. and Jentzsch G., 1998. Investigations of super-conducting gravimeter records in the frequency range of the free oscillations of the Earth — the noise magnitude. In: Ducarme B. (Ed.), Proceedings of the 13th International Symposium on Earth Tides. Observatoire Royal de Belgique, Brussels, Belgium, 641–649.

    Google Scholar 

  • Banka D. and Crossley D., 1999. Noise levels of superconducting gravimeters at seismic frequencies. Geophys. J. Int., 139, 87–97.

    Article  Google Scholar 

  • Berger J. and Davis P., 2004. Ambient Earth Noise: A survey of the Global Seismographic Network. J. Geophys. Res., 119, B11307, DOI: 10.1029/2004JB003408.

    Google Scholar 

  • Cooley J.W. and Tukey J.W., 1965. An algorithm for machine calculation of complex Fourier series. Math. Comp., 19, 297–301.

    Article  Google Scholar 

  • Crossley D., Hinderer J. and Boy J.P., 2004. Regional gravity variations in Europe from superconducting gravimeters. J. Geodyn., 38, 325–342.

    Article  Google Scholar 

  • Ducarme B., Venedikov A., Arnoso J. and Vieira R., 2004. Determination of the long period tidal waves in the GGP superconducting gravity data. J. Geodyn., 38, 307–324, DOI: 10.1016/j.jog.2004.07.004

    Article  Google Scholar 

  • Freybourger M., Hinderer J. and Trampert J., 1997. Comparative study of superconducting gravimeters and broadband seismometers STS-1/Z in seismic and subseismic frequency bands. Phys. Earth Planet. Inter., 101, 203–217.

    Article  Google Scholar 

  • Goodkind J.M., 1999. The superconducting gravimeter. Rev. Sci. Instrum., 70, 4131–4152.

    Article  Google Scholar 

  • Imanishi Y., 2005. On the possible cause of long period instrumental noise (parasitic mode) of a superconducting gravimeter. J. Geodesy, 78, 683–690, DOI: 10.1007/s00190-005-0434-5.

    Article  Google Scholar 

  • IRIS, 2012. SEED Reference Manual, Standard for the Exchange of Earthquake Data. International Federation of Digital Seismograph Networks, Incorporated Research Institutions for Seismology, United States Geological Survey (http://www.fdsn.org/seed_manual/SEEDManual_V2.4.pdf).

    Google Scholar 

  • McNamara D.E. and Buland P.B., 2004. Ambient noise levels in the continental United States. Bull. Seismol. Soc. Amer., 94. 1517–1527, DOI: 10.1785/012003001.

    Article  Google Scholar 

  • McNamara D.E. and Boaz R.I., 2011. PQLX: A Seismic Data Quality Control System Description, Applications, and Users Manual. U.S. Geological Survey Open-File Report 2010–1292 (http://pubs.usgs.gov/of/2010/1292/pdf/OF10-1292.pdf).

    Google Scholar 

  • Peterson J., 1993. Observations And Modeling Of Seismic Background Noise. U.S. Geological Survey Open-File Report 93–332 (http://earthquake.usgs.gov/regional/asl/pubs/files/ofr93-322.pdf).

    Google Scholar 

  • Rosat S., Hinderer J. and Rivera L., 2003a. First observation of 2S1 and study of the splitting of the football mode 0S2 after the June 2001 Peru earthquake of magnitude 8.4. Geophys. Res. Lett., 30, 2111, DOI: 10.1029/2003GL018304.

    Article  Google Scholar 

  • Rosat S., Hinderer J., Crossley D. and Rivera L., 2003b. The search for the Slichter mode: comparison of noise levels of superconducting gravimeters and investigation of a stacking method. Phys. Earth Planet. Inter., 140, 183–202, DOI: 10.1016/j.pepi.2003.07.010.

    Article  Google Scholar 

  • Rosat S., Hinderer J., Crossley D. and Boy J.P., 2004. Performance of superconducting gravimeters from long-period seismology to tides. J. Geodyn., 38, 461–476.

    Article  Google Scholar 

  • Rosat S. and Hinderer J., 2011. Noise levels of superconducting gravimeters: updated comparison and time stability. Bull. Seismol. Soc. Amer., 101, 1233–1241, DOI: 10.1785/0120100217.

    Article  Google Scholar 

  • Van Camp, M., 1999. Measuring seismic normal modes with the GWR C021 superconducting gravimeter. Phys. Earth Planet. Inter., 116, 81–92.

    Article  Google Scholar 

  • Van Camp M. and Vauterin, P., 2005. Tsoft: graphical and interactive software for the analysis of time series and Earth tides. Comput. Geosci., 31, 631–640, DOI: 10.1016/j.cageo.2004.11.015.

    Article  Google Scholar 

  • Vanícek P., 1969. Approximate spectral analysis by least-squares fit. Astrophys. Space Sci., 4, 387–391.

    Article  Google Scholar 

  • Wessel P. and Smith W.H.F., 1995 New version of the generic mapping tools. Eos Trans. AGU, 76(33), 329–329, DOI: 10.1029/95EO00198.

    Article  Google Scholar 

  • Widmer-Schnidrig R., 2003. What Can Superconducting Gravimeters Contribute to Normal-Mode Seismology? Bull. Seismol. Soc. Amer., 93, 1370–1380.

    Article  Google Scholar 

  • Zábranová E., Matyska C., Hanyk L. and Pálinkáš V., 2012. Constraints on the centroid moment tensors of the 2010 Maule and 2011 Tohoku earthquakes from radial modes. Geophys. Res. Lett., 39, L18302, DOI: 10.1029/2012GL052850.

    Article  Google Scholar 

  • Zürn W., Widmer R., Richter B. and Wenzel H.G., 1995. Comparison of free-oscillation spectra from different instruments. Marees Terrestres Bulletin D’Infornations, 122, 9173–9179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vojtech Pálinkáš.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaľko, M., Pálinkáš, V. SGNoise - a tool for the ambient noise level analysis at superconducting gravimeter stations. Stud Geophys Geod 59, 188–199 (2015). https://doi.org/10.1007/s11200-014-0928-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-014-0928-9

Keywords

Navigation