Skip to main content

Advertisement

Log in

Numerical relationships between magnetic parameters measured in Quaternary sediments and global paleoclimatic proxies

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The complexity of most geological and geophysical problems prompts sometimes the use of non linear mathematical methods to handle them. An adaptive neuro fuzzy inference system (ANFIS) that combines fuzzy logic with neural networks, is applied here to study a paleoclimate section from the Quaternary sedimentary fill of the Lake Mucubají (western Venezuela). The purpose of this work is to find a set of numerical relationships that could predict the possible connections between oxygen isotope (δ18O) values from two different locations in the northern hemisphere (Ammersee in southern Germany and an ice core from the Greenland Ice Core Project — GRIP) and rock-magnetic parameters measured in Mucubají samples (i.e. mass-specific magnetic susceptibility — χ, magnetic remanence S-ratio, mass-specific saturation isothermal remanent magnetization — SIRM and anhysteretic remanent magnetization — ARM). The best inferences in terms of coefficient of determionation R2 and the Root Mean-Square Error (RMSE) are obtained using those magnetic data as input that include information about magnetite grain size distributions, e.g., SIRM and ARM in FIS structures [1χ, 4ARM] and [4ARM, 1SIRM]. A comparison between Ammersee and GRIP actual data, as well as their corresponding inferences for the FIS structure [4ARM, 1SIRM], reveals a reasonable good inference of global trends for both records, overlooking the regional and/or local paleoclimate forcings that might have affected Ammersee. A better correlation between global isotope paleoclimate records and magnetic proxies, is perhaps prevented by the role played by local and regional paleoclimate and tectonism in Mucubají. We also argue that the ratio of ARM over SIRM appears to be related in a complex way to the onset and to the end of the Younger Dryas. Our novel approach to the assessment of a specific paleoclimate case study shows the potential of the ANFIS technique in solving problems where traditional univariate and multivariate linear regression methods could prove inadequate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander I., Kroon D. and Thompson R., 1993. Late Quaternary paleoenvironmental change on the northeastern Australian margin as evidenced in oxygen isotope stratigraphy, mineral magnetism and sedimentology. In: McKenzie J.A., Davies P.J., Palmer-Juslon A. et al. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 133, College Station, TX (Ocean Drilling Program), 129–161, DOI: 10.2973/odp.proc.sr.133.224.1993.

    Google Scholar 

  • Audemard F.A., Pantosti D., Machette M., Costa C., Okumura K., Cowan H., Diederix H. and Sawop Participants, 1999. Trench investigation along the Merida section of the Boconó fault (central Venezuelan Andes). Tectonophysics, 308, 1–21.

    Article  Google Scholar 

  • Balsam W., Ji J. and Chen J., 2004. Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility. Earth Planet. Sci. Lett., 223, 335–348.

    Article  Google Scholar 

  • Brachfeld S.A. and Banerjee S.K., 2000. Rock-magnetic carriers of century-scale susceptibility cycles in glacial-marine sediments from the Palmer Deep, Antarctic Peninsula. Earth Planet. Sci. Lett., 176, 443–455.

    Article  Google Scholar 

  • Bowen G.J. 2008 Spatial analysis of the intra-annual variation of precipitation isotope ratios and its climatological corollaries. J. Geophys. Res., 113, D05113, DOI: 10.1029/2007JD009295.

    Article  Google Scholar 

  • Bloemendal J., King J.W., Hall F.R. and Doh S.J., 1992. Rock magnetism of Late Neogene and Pleistocene deep-sea sediments: relationship to sediment source, diagenetic processes and sediment lithology. J. Geophys. Res., 97, 4361–4375.

    Article  Google Scholar 

  • Carrillo E, Beck A., Audemard F.A., Moreno E. and Ollarves R., 2008. Disentangling Late Quaternary climatic and seismo-tectonic controls on Lake Mucubají sedimentation (Mérida Andes, Venezuela). Palaeogeogr. Palaeoclimatol. Palaeoecol., 259, 284–300.

    Article  Google Scholar 

  • Da Silva A., Costanzo-Álvarez V., Hurtado N., Aldana M., Bayona G., Guzmán O. and López-Rodríguez D., 2010 Study of a possible correlation between Miocene global climatic changes and magnetic proxies d18O, using neuro fuzzy logic analysis: stratigraphic well Saltarín 1A (Llanos foreland basin, Colombia. Stud. Geophys. Geod., 54, 607–631

    Article  Google Scholar 

  • Finol J. and Jing X.D., 2002. Predicting petrophysical parameters in a fuzzy environment in soft computing for reservoir characterisation and modeling. In: Wong P., Aminzadeh F. and Nikravesh M. (Eds.), Soft Computing for Reservoir Characterization and Modeling. Studies in Fuzziness and Soft Computing, 80, Physica-Verlag, Heidelberg, 183–217.

    Chapter  Google Scholar 

  • Frank U. and Nowaczyk N.R., 2008. Mineral magnetic properties of artificial samples systematically mixed from haematite and magnetite. Geophys. J. Int., 175, 449–461.

    Article  Google Scholar 

  • Gautam D.K and Holz K.P., 2001. Rainfall-runoff modeling using adaptive neuro-fuzzy systems. J. Hydroinform., 3, 3–10.

    Google Scholar 

  • Geiss C.E. and Banerjee S.K., 1997. A multi-parameter rock magnetic record of the last glacialinterglacial paleoclimate from south-central Illinois, USA. Earth Planet. Sci. Lett., 152, 203–216.

    Article  Google Scholar 

  • Giegengack R., Grauch R.I. and Sahagam R., 1976. Geometry of Late Cenozoic displacement along the Boconó Fault, Venezuelan Andes. Boletín de Geología Publicación Especial, 7/2, 1201–1223

    Google Scholar 

  • Giegengack R., 1984. Late Cenozoic tectonic environments of the central Venezuelan Andes. Geol. Soc. Amer. Mem., 162, 343–364.

    Article  Google Scholar 

  • Harris S.E. and Mix A., 2002. Climatic and tectonic influences on continental erosion of tropical South America, 0–13 Ma. Geology, 30, 447–450.

    Article  Google Scholar 

  • Harris S.E. and Mix A.C., 1999, Pleistocene precipitation balance in the Amazon Basin recorded in deep-sea sediments. Quat. Res., 51, 14–26.

    Article  Google Scholar 

  • Hodell D.A., Brenner M., Curtis J.H. and Guilderson T., 2001 Solar forcing of drought frequency in the Maya Lowlands. Science, 292, 1367–1370

    Article  Google Scholar 

  • Hu S.Y., Wang S.M. and Appel E., 2000. The environmental mechanism of fluctuations of magnetic susceptibility recorded in lacustrine sediments from Jalai Nur, Inner Mongolia. Sci. China Ser. D — Earth Sci., 43, 534–540.

    Article  Google Scholar 

  • Huang C. and Leung Y., 1999 Estimating the relationship between isoseismal area and earthquake magnitude by a hybrid fuzzy-neural-network method. Fuzzy Set Syst., 107, 131–146.

    Article  Google Scholar 

  • Huang Y., Gedeon T.D. and Wong PM., 2001 An integrated neural-fuzzy-genetic-algorithm using hyper-surface membership functions to predict permeability in petroleum reservoirs. Eng. App. Artif. Intel., 14, 15–21.

    Article  Google Scholar 

  • Hurtado N., Aldana M. and Torres J., 2008. Comparison between neuro-fuzzy and fractal models for permeability prediction. Comput. Geosci., 13, 181–186.

    Article  Google Scholar 

  • Janakiraman K.K. and Konno M., 2002 Cross-borehole geological interpretation model based on a fuzzy neural network and geotomography. Geophysics, 67, 1177–1183.

    Article  Google Scholar 

  • Johnson K.R. and Ingram B.L., 2004. Spatial and temporal variability in the stable isotope systematics of modern precipitation in China: implications for paleoclimate reconstructions. Earth Planet. Sci. Lett., 220, 365–377

    Article  Google Scholar 

  • Jones P.D., Osborn T.J. and Briffa K.R., 2001. The evolution of climate over the last millennium. Science, 292, 662–667

    Article  Google Scholar 

  • Kent D.V., 1982. Apparent correlation of palaeomagnetic intensity and climatic records in deep-sea sediments. Nature, 299, 538–539.

    Article  Google Scholar 

  • Kowalski E.A., 2002. Mean annual temperature estimation based on leaf morphology: a test from tropical South America. Palaeogeogr. Palaeoclimatol. Palaeoecol., 188, 141–165

    Article  Google Scholar 

  • Lea D.W., Pak D.K., Peterson L.C. and Hughen K.A., 2003. Synchroneity of tropical and highlatitude Atlantic temperatures over the last glacial termination. Science, 301, 1361–1364.

    Article  Google Scholar 

  • Lin H.-L., Peterson L.C., Overpeck J.T., Trumbore S.E. and Murray D.W., 1997. Late Quaternary climate change from δ18O records of multiple species of planktonic foraminifera: highresolution records from the anoxic Cariaco Basin, Venezuela. Paleoceanography, 12, 415–427.

    Article  Google Scholar 

  • Mahaney W., Milner M.W., Voros J., Kalm V., Hütt G., Bezada M., Hancock M.G.V. and Aufreiter S., 2000. Stratotype for the Mérida Glaciation at Pueblo Llano in the northern Venezuelan Andes. J. South Am. Earth. Sci., 13, 761–774.

    Article  Google Scholar 

  • Moreno E., Thouveny N., Delanghe D., McCave N.I. and Shackleton N.J., 2002. Climatic and oceanographic changes in the Northeast Atlantic reflected by magnetic properties of sediments deposited on the Portuguese Margin during the last 340 ka. Earth Planet. Sci. Lett., 202, 465–480.

    Article  Google Scholar 

  • Mourguiart Ph., Correge T., Wirrmann D., Argollo J., Montenegro M.E., Pourchet M. and Carbonel P., 1998. Holocene palaeohydrology of Lake Titicaca estimated from an ostracodbased transfer function. Palaeogeogr. Palaeoclimatol. Palaeoecol., 143, 51–72

    Article  Google Scholar 

  • Muller S., Legrand J.-F., Muller J.-D., Cansi Y. and Crusem R., 1998. seismic events discrimination by neuro.fuzzy-based data merging. Geophys. Res. Lett., 25, 3449–3452.

    Article  Google Scholar 

  • Muller S., Garda P., Muller J.-D. and Cansi Y., 1999. Seismic events discrimination by neuro-fuzzy merging of signal and catalogue features. Phys. Chem. Earth A, 24, 201–206.

    Article  Google Scholar 

  • Nikravesh M. and Aminzadeh F., 2001. Mining and fusion of petroleum data with fuzzy logic and neural network agents. J. Petrol. Sci. Eng., 29, 221–238.

    Article  Google Scholar 

  • Pérez O., Bilham R., Bendick R., Hernández N., Hoyer M., Velando J., Moncayo C. and Kozuch M., 2001. Velocidad relative entre las places del Caribe y Sudamérica a partir de observaciones dentro del sistema de posicionamiento global (GPS) an el norte de Venezuela. Interciencia, 26, 69–74 (in Spanish).

    Google Scholar 

  • Poage M.A. and Chamberlain C.P., 2001. Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change. Am. J. Sci., 301, 1–15

    Article  Google Scholar 

  • Rajaee T., Mirbagheri S.A., Nourani V. and Alikhani A., 2010. Prediction of daily suspended sediment load using wavelet and neuro fuzzy combined model. Int. J. Environ. Sci. Tech., 7, 93–110.

    Article  Google Scholar 

  • Retallack G.J., Sheldon N.D., Cogoini M. and Elmore R.D., 2003. Magnetic susceptibility of early Paleozoic and Precambrian paleosols. Palaeogeogr. Palaeoclimatol. Palaeoecol., 198, 373–380.

    Article  Google Scholar 

  • Rull V., 1996. Late Pleistocene and Holocene climates of Venezuela. Quat. Int., 31, 85–94.

    Article  Google Scholar 

  • Salgado-Labouriau M.L. and Schubert C., 1976. Palynology of Holocene peat bogs from the central Venezuelan Andes. Palaeogeogr. Palaeoclimatol. Palaeoecol., 19, 147–156.

    Article  Google Scholar 

  • Shackleton N.J. and Opdyke N.D., 1973. Oxygen isotope and paleomagnetic stratigraphy ofequatorial Pacific core V28–238: Oxygen isotope temperatures and ice volumes on a 105-year and 106-year scale. Quat. Res., 3, 39–55.

    Article  Google Scholar 

  • Schubert C., 1982. Neotectonics of Boconó Fault, western Venezuela. Tectonophysics, 85, 205–220.

    Article  Google Scholar 

  • Singh U.K., Singh D.K. and Singh H., 2010. Application of neuro fuzzy pattern recognition method in borehole geophysics. Acta Geod. Geoph. Hung., 45, 417–425.

    Article  Google Scholar 

  • Sturm C.; Hoffmann G. and Langmann B., 2007. Simulation of the stable water isotopes in precipitation over South America: comparing regional to global circulation models. J. Climate, 20, 3730–3750

    Article  Google Scholar 

  • Tahmasebi P. and Hezarkhani A., 2010. Application of adaptive neuro-fuzzy inference system for grade estimation; case study, Sarcheshmeh Porphyry Copper deposit, Kerman, Iran. Aust. J. Basic Appl. Sci., 4, 408–420.

    Google Scholar 

  • Tutmez B., Hatipoglu Z. and Kaymak U., 2006. Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system. Comput. Geosci., 32, 421–433

    Article  Google Scholar 

  • Volkman J.K., Barrerr S.M., Blackburn S.I. and Sikes E.L., 1995. Alkenones in Gephyrocapsa oceanica: Implications for studies of paleoclimate. Geochim. Cosmochim. Acta, 59, 513–520.

    Article  Google Scholar 

  • von Grafenstein U., Erlenkeuser H., Brauer A., Jouzel J. and Johnsen S.J., 1999. A Mid-European decadal isotope-climate record from 15,500 to 5000 years B.P. Science, 284, 1654–1657.

    Article  Google Scholar 

  • Ziaii M., Pouyan A.A. and Ziaei M., 2009. Neuro-fuzzy modelling in mining geochemistry: Identification of geochemical anomalies. J. Geochem. Explor., 100, 25–36

    Article  Google Scholar 

  • Zoveidavianpoor M., Samsuri A. and Shadizadeh S.R., 2013. Adaptive neuro fuzzy inference system for compressional wave velocity prediction in a carbonate reservoir. J. Appl. Geophys., 89, 96–107.

    Article  Google Scholar 

  • Zhu R.X., Shi C.D., Suchy V., Zeman A., Guo B. and Pan Y., 2001. Magnetic properties and paleoclimatic implications of loess-paleosol sequences of Czech Republic. Sci. China Ser. D — Earth Sci., 44, 385–394.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Costanzo-Alvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peralta, A., Costanzo-Alvarez, V., Carrillo, E. et al. Numerical relationships between magnetic parameters measured in Quaternary sediments and global paleoclimatic proxies. Stud Geophys Geod 57, 647–668 (2013). https://doi.org/10.1007/s11200-013-0809-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-013-0809-7

Keywords

Navigation