Skip to main content

Advertisement

Log in

Regional quasigeoid from GOCE and terrestrial measurements

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Results obtained as a solution to the geodetic boundary-value problem, where two different sources of input boundary data are combined together, are presented. On the upper part of the boundary defined by the Earth surface and separated from the Earth masses, the gravity anomalies are derived from GOCE gravity gradiometry data using a transformation and downward continuation procedure. On the bottom part of the boundary, the gravity anomalies derived from the terrestrial or marine gravity measurements are used. The boundary-value problem is then solved numerically by the finite element method. In some cases an independency of our solution from the highdegree global gravity models (e.g. EGM2008) can be considered as the advantage. The standard deviation of our model tested by GNSS/leveling method in Auvergne area is 10 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amante C. and Eakins B.W., 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24 (http://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf).

    Google Scholar 

  • Arabelos D. and Tscherning C.C., 1990. Simulation of regional gravity field recovery from satellite gravity gradiometer data using collocation and FFT. Bull. Geod., 64, 363–382.

    Article  Google Scholar 

  • Arabelos D. and Tscherning C.C., 1993. Regional recovery of the gravity field from SGG and SST/GPS data using collocation. In: Study of the Gravity Field Determination Using Gradiometry and GPS, Phase 1. Final Report. ESA Contract 9877/92/F/FL. ESTEC, European Space Agency, Noordwijk, The Netherlands.

    Google Scholar 

  • Arabelos D. and Tscherning C.C., 1995. Regional recovery of the gavity field from the satellite gradiometer and gravity vector data using collocation. J. Geophys. Res., 100(B11), 22009–22015.

    Article  Google Scholar 

  • Arsov K., 2012. GOCEPARSER- A program to parse GOCE level 1b and level 2 data. Geophysical Research Abstracts, 14, EGU2012-2016 (presentation available online at http://presentations.copernicus.org/EGU2012-2016_presentation.pdf).

  • Aster R.C., Borchers B. and Thurber C.H., 2005. Parameter Estimation and Inverse Problems. Elsevier, Amsterdam, The Netherlands, 301 pp.

    Google Scholar 

  • Bölling C. and Grafarend E.W., 2005. Ellipsoidal spectral properties of the Earth’s gravitational potential and its first and second derivatives. J. Geodesy, 79, 300–330.

    Article  Google Scholar 

  • Casotto S. and Fantino E., 2009. Gravitational gradients by tensor analysis with application to spherical coordinates. J. Geodesy, 83, 621–634.

    Article  Google Scholar 

  • de Witte S., van Hees R., Rispens S. and Fiorot S., 2011. GOCE XML Parser. ESA Technical Note GO-TN-HPF-GS-0192, ESTEC, European Space Agency, Noordwijk, The Netherlands.

    Google Scholar 

  • Denker H., 2003. Computation of gravity gradients for Europe for calibration/validation of GOCE data. In: Tziavos I.N. (Ed.), Gravity and Geoid 2002. Ziti Editions, Thessaloniki, Greece, 287292 (http://olimpia.topo.auth.gr/gg2002/session3/denker.pdf).

    Google Scholar 

  • Drinkwater M.R., Haagmans R., Muzi D., Popescu A., Floberhagen R., Kern M. and Fehringer M., 2007. The GOCE gravity mission: ESA’s first core Earth explorer. In: Fletcher K. (Ed.), Proceedings of the 3rd International GOCE User Workshop, Frascati, Rome, Italy. ESA Spec. Publ. SP-627, ISBN 92-9092-938-3, European Space Agency, Noordwijk, The Netherlands.

    Google Scholar 

  • Duquenne H., 2007. A data set to test geoid computation methods. Proceedings of the 1st International Symposium of the International Gravity Field Service (IGFS), Istanbul, Turkey. Harita Dergisi, Special Issue 18, 6165.

    Google Scholar 

  • Eicker A., Schall J. and Kusche J., 2014. Regional gravity modelling from spaceborne data: case studies with GOCE. Geophys. J. Int., 196, 1431–1440, DOI: 10.1093/gji/ggt485.

    Article  Google Scholar 

  • ESA, 1999. Gravity Field And Steady-State Ocean Circulation — The Four Candidate Earth Explorer Core Missions. ESA Spec. Publ. SP-1233. ESA Publications Division, ESTEC, Noordwijk, The Netherlands (http://esamultimedia.esa.int/docs/goce_sp1233_1.pdf).

    Google Scholar 

  • ESA, 2006. GOCE L1B Products User Handbook. ESA Technical Note GOCE-GSEG-EOPG-TN- 06-0137, ESA Publications Division, ESTEC, Noordwijk, The Netherlands.

    Google Scholar 

  • Eshagh M., 2011a. Inversion of satelite gradiometry data using statistically modified integral formulas for local gravity field recovery. Adv. Space Res., 47, 74–85.

    Article  Google Scholar 

  • Eshagh M., 2011b. The effect of spatial truncation error on integral inversion of satellite gravity gradiometry data. Adv. Space Res., 47, 1238–1247.

    Article  Google Scholar 

  • Eshagh M., 2011c. On integral approach to regional gravity field modelling from satellite gradiometric data. Acta Geophys., 59, 29–54.

    Article  Google Scholar 

  • Eshagh M. and Sjöberg L.E., 2011. Determination of gravity anomaly at sea level from inversion of satelite gravity gradiometric data. J. Geodyn., 51, 366–377.

    Article  Google Scholar 

  • Farr T.G., Rosen P.A., Caro E., Crippen R., Duren R., Hensley S., Kobrick, M., Paller M., Rodriguez E., Roth L., Seal D., Shaffer S., Shimada J., Umland J., Werner M., Oskin M., Burbank D. and Alsdorf D., 2007. The shuttle radar topography mission. Rev. Geophys., 45, RG2004.

    Article  Google Scholar 

  • Fašková Z., 2006. Application of the finite element method to the geodetic boundary value problem in Europe. J. Electr. Eng., 57, Special Issue, 39–42.

    Google Scholar 

  • Fašková Z., Čunderlík R., Janák J., Mikula K. and Šprlák M., 2007. Gravimetric quasigeoid in Slovakia by the finite element method. Kybernetika, 43, 789–796.

    Google Scholar 

  • Fašková Z., Čunderlík R. and Mikula K., 2010. Finite element method for solving geodetic boundary value problems. J. Geodesy, 84, 135–144.

    Article  Google Scholar 

  • Fuchs M.J. and Bouman J., 2011. Rotation of GOCE gravity gradients to local frames. Geophys. J. Int., 187, 743–753.

    Google Scholar 

  • Grombein T., Seitz K. and Heck B., 2011. Smoothing GOCE gravity gradients by means of topographic-isostatic reductions. In: Ouwehand L. (Ed.), Proceedings of the 4th International GOCE User Workshop. ESA Spec. Publ. SP-696, ESA Publications Division, ESTEC, Noordwijk, The Netherlands.

    Google Scholar 

  • Grombein T., Seitz K. and Heck B., 2014. Topographic-isostatic reduction of GOCE gravity gradients. In: Rizos Ch. and Willis P. (Eds), Earth on the Edge: Science for a Sustainable Planet. International Association of Geodesy Symposia 139, Springer-Verlag, Berlin, Germany, 349–356.

    Google Scholar 

  • Gruber T., Rummel R., Abrikosov O. and van Hees R., 2010 GOCE Level 2 Product Data Handbook. Issue 4.2. Product Document GO-MA-HPF-GS-0110. ESA Publications Division, ESTEC, Noordwijk, The Netherlands.

    Google Scholar 

  • Gruber T., Visser P.N.A.M., Ackermann Ch. and Hosse M., 2011. Validation of GOCE gravity field models of orbit residuals and geoid comparisons. J. Geodesy, 85, 845–860.

    Article  Google Scholar 

  • Haagmans R., Prijatna K. and Omang O.C.D., 2003. An alternative concept for validation of GOCE gradiometry results based on regional gravity. In: Tziavos I.N. (Ed.), Gravity and Geoid 2002. Ziti Editions, Thessaloniki, Greece, 281 286 (http://olimpia.topo.auth.gr/gg2002 /session3/haagmans.pdf).

    Google Scholar 

  • Hansen P.C. and O’Learly D.P., 1993. The use of the L-curve in the regularization of discrete illposed problems. SIAM J. Sci. Comput., 14, 1487–1503.

    Article  Google Scholar 

  • Hansen P.C., 2007. Regularization tools 4.0 for Matlab 7.3. Numer. Algorithmss, 46, 189–194.

    Article  Google Scholar 

  • Heck B., 1979. Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten. Deutsche Geodätische Kommission, Reihe C, No. 259, München, Germany.

    Google Scholar 

  • Heck B. and Wild F., 2004. Topographic reductions in satellite gravity gradiometry based on a generalized condensation model. In: Sansò F. (Ed), A Window to the Future of Geodesy. International Association of Geodesy Symposia 128, Springer-Verlag Berlin, Germany, 294–299.

    Article  Google Scholar 

  • Heiskanen W.H. and Moritz H., 1967. Physical Geodesy. Freeman & Co., San Francisco, CA.

    Google Scholar 

  • Hoerl A.E., Kennard R.W. and Baldwin K.F., 1975. Ridge regression: some simulations. Commun. Statist., 4, 105–123.

    Article  Google Scholar 

  • Holota P. and Nesvadba O., 2006. Optimized solution and a numerical treatment of two boundary problems in combining terrestrial and satellite data. In: Forsberg R. (Ed.), Gravity Field of the Earth: Proceedings of the 1st International Symposium of the International Gravity Field Service, 28 August- 1 September, 2006, Istanbul, Turkey. Harita Genel Komutanligi, Ankara, Turkey, 25–30.

    Google Scholar 

  • Holota P. and Nesvadba O., 2007. A regularized solution of boundary problems in combining terrestrial and satellite gravity field data. Proceedings of the 4th International GOCE User Workshop held on 6-9 November 2006 in Frascati, Italy. ESA Spec. Publ. SP-627, ESA Publications Division, ESTEC, Noordwijk, The Netherlands, 121–126.

    Google Scholar 

  • Janák J. and Vaníek P., 2005. Mean free-air gravity anomalies in the mountains. Stud. Geophys. Geod., 49, 31–42.

    Article  Google Scholar 

  • Janák J., Fukuda Y. and Xu P.L., 2009. Application of GOCE data for regional gravity field modeling. Earth Planets Space, 61, 835–843.

    Article  Google Scholar 

  • Janák J. and Wild-Pfeiffer F., 2010. Comparison of various topographic-isostatic effects in terms of smoothing gradiometric observations. In: Mertikas S. (Ed.), Gravity, Geoid and Earth Observation. International Association of Geodesy Symposia 135, Springer-Verlag, Berlin, Germany, 377–382.

    Article  Google Scholar 

  • Janák J., Wild-Pfeiffer F. and Heck B., 2012. Smoothing the gradiometric observations using different topographic-isostatic models: A regional case study. In: Sneeuw N., Novák P., Crespi M. and Sanso F. (Eds), VII Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia 137, Springer-Verlag, Berlin, Germany, 245–250.

    Article  Google Scholar 

  • Kern M., Schwarz K.P. and Sneeuw N., 2003. A study on the combination of satellite, airborne, and terrestrial gravity data. J. Geodesy, 77, 217–225.

    Article  Google Scholar 

  • Kern M. and Haagmans R., 2005. Determination of gravity gradients from terrestrial gravity data for calibration and validation of gradiometric GOCE data. In: Jekeli C., Bastos L. and Fernandes J., (Eds.) Gravity, Geoid and Space Missions. International Association of Geodesy Symposia 129, Springer-Verlag, Berlin, Germany, 95–100.

    Article  Google Scholar 

  • Koop R. and Stelpstra D., 1989. On the computation of the gravitational potential and its first and second order derivatives. Manuscripta Geodaetica, 14, 373–382.

    Google Scholar 

  • Kotsakis C., 2007. A covariance adaptive approach for regularized inversion in linear models. Geophys. J. Int., 171, 509–522.

    Google Scholar 

  • Li J., 2002. A formula for computing the gravity disturbance from the second radial derivative of the disturbing potential. J. Geodesy., 76, 226–231.

    Article  Google Scholar 

  • Li J., 2005. Integral formulas for computing the disturbing potential, gravity anomaly and the deflection of the vertical from the second-order radial gradient of the disturbing potential. J. Geodesy, 79, 64–70.

    Article  Google Scholar 

  • Martinec Z., 2003. Green’s function solution to spherical gradiometric boundary-value problems. J. Geodesy, 77, 41–49.

    Article  Google Scholar 

  • Meissl P., 1981. The Use of Finite Elements in Physical Geodesy. Report 313. Department of Geodetic Science and Surveying, The Ohio State University, Columbus, OH.

    Google Scholar 

  • Moritz H., 1971. Kinematical Geodesy II. Report 165. Department of Geodetic Science, The Ohio State University, Columbus, OH.

    Google Scholar 

  • Pail R., Goiginger H., Mayrhofer R., Schuh W.D., Brockmann J.M., Krasbutter I., Hoeck E. and Fecher T., 2010. GOCE gravity field model derived from orbit and gradiometry data applying the time-wise method. In: Lacoste-Francis H. (Ed.), ESA Living Planet Symposium. ESA Spec. Publ. SP-686, ESA Publications Division, ESTEC, Noordwijk, The Netherlands.

    Google Scholar 

  • Pail R., Bruinsma S., Migliaccio F., Förste Ch., Goiginger H., Schuh W.D., Höck E., Reguzzoni M., Brockmann J.M., Abrikosov O., Veicherts M., Fecher T., Mayrhofer R., Krasbutter I., Sansó F. and Tscherning C.C., 2011. First GOCE gravity field models derived by three different approaches. J. Geodesy, 85, 819–843.

    Article  Google Scholar 

  • Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res., 117, B04406, DOI: 10.1029/2011JB008916.

    Article  Google Scholar 

  • Pizzetti P., 1911. Sopra il calcolo teorico delle deviazioni del geoide dall’ ellissoide. Atti R. Accad. Sci. Torino, 46, 331, (in Italian).

    Google Scholar 

  • Reddy J.N., 1993. An Introduction to the Finite Element Method. 2. Mc Graw-Hill, Singapore.

    Google Scholar 

  • Reed G.B., 1973. Application of Kinematical Geodesy for Determining the Short Wavelength Component of the Gravity Field by Satellite Gradiometry. Technical Report 201. Department of Geodetic Science, The Ohio State University, Columbus, OH.

    Google Scholar 

  • Roth M., 2012. GOCEXML2ASCII- an XML to ASCII converter for GOCE level 2 EGG_NOM and SST_PSO data. (https://earth.esa.int/web/guest/software-tools/-/article/gocexml2ascii).

    Google Scholar 

  • Rummel R., 1986. Satellite gradiometry. In: Sünkel H. (Ed.), Mathematical and Numerical Techniques in Physical Geodesy. Lecture Notes in Earth Sciences 7, Springer-Verlag, Berlin, Germany, 317–363.

    Chapter  Google Scholar 

  • Shaofeng B. and Dingbo C., 1991. The finite element method for the geodetic boundary value problem. Manuscr. Geod., 16, 353–359.

    Google Scholar 

  • Shen Y., Xu P.L. and Li B., 2012. Bias-corrected regularized solution to inverse ill-posed models. J. Geodesy, 86, 597–608.

    Article  Google Scholar 

  • Šprlák M., Fašková Z. and Mikula K., 2006. Application of the finite element method to the mixed geodetic boundary-value problem with Newton and Dirichlet boundary conditions. In: MAGIA 2006: Mathematics, Geometry and Their Applications. Slovak University of Technology, Bratislava, Slovakia, ISBN 80-227-2583-8, 23–32.

    Google Scholar 

  • Šprlák M., 2012. A GUI application for evaluation of the gravitational tensor components generated by level ellipsoid of revolution. Comput. Geosci., 46, 77–83.

    Article  Google Scholar 

  • Thalhammer M., 1995. Regionale Gravitationsfeldbestimmung mit zukünftigen Satellitenmissionen (SST und Gradiometrie). Deutsche Geodäetische Kommission, Reihe C, No. 437, München, Germany.

    Google Scholar 

  • Tikhonov A.N., 1963. Solution of incorrectly formulated problems and regularization method. Sov. Math. Dokl., 4, 1035–1038.

    Google Scholar 

  • Tóth G., Földváry L., Tziavos I.N. and ádám J., 2006. Upward/downward continuation of gravity gradients for precise geoid determination. Acta Geod. Geophys. Hung., 41, 21–30.

    Article  Google Scholar 

  • Tscherning C.C., Forsberg R. and Vermeer M., 1990. Methods for Regional Gravity Field Modeling from SST and SGG Data. Reports of the Finnish Geodetic Institute, 90:2, Helsinki, Finland.

    Google Scholar 

  • Tscherning C.C., 1993. Computation of covariances of derivatives of the anomalous gravity potential in a rotated reference frame. Manuscripta Geodaetica, 18, 115–123.

    Google Scholar 

  • Tscherning C.C. and Arabelos D.N., 2011. Gravity anomaly and gradient recovery from GOCE gradient data using LSC and comparisons with known ground data. In: Ouwehand L. (Ed.), International GOCE User Workshop. ESA Spec. Publ. SP-696, ESA Publications Division, ESTEC, Noordwijk, The Netherlands.

    Google Scholar 

  • van Gelderen M. and Rummel R., 2001. The solution of the general geodetic boundary value problem by least squares. J. Geodesy, 75, 1–11.

    Article  Google Scholar 

  • van Gelderen M. and Rummel R., 2002. Corrections to “The solution of the general geodetic boundary value problem by least squares”. J. Geodesy, 76, 121–122.

    Article  Google Scholar 

  • Wild F. and Heck B., 2005. A comparison of different isostatic models applied to satellite gravity gradiometry. In: Jekeli C., Bastos L. and Fernandes J. (Eds), Gravity, Geoid and Space Missions. International Association of Geodesy Symposia 129, Springer-Verlag, Berlin, Germanu, 230–235.

    Article  Google Scholar 

  • Wild-Pfeiffer F. and Heck B., 2008. Topographic and isostatic reductions for use in satellite gravity gradiometry. In: Xu P., Liu J. and Dermanis A. (Eds), Proceedings of the VI. Hotine-Marussi Symposium. International Association of Geodesy Symposia 132, Springer-Verlag, Berlin, Germany, 49–55.

    Article  Google Scholar 

  • Wolf K.I., 2007. Kombination globaler Potentialmodelle mit terresrischen Schweredaten fur die Berechnung der zweiten Ableitungen des Gravitationspotentials in Satellitenbahnhohe. Ph.D. Thesis. University of Hannover, Hannover, Germany.

    Google Scholar 

  • Xu P.L., 1994. Determination of surface gravity anomalies using gradiometric observables. Geophys. J. Int., 110, 321–332.

    Article  Google Scholar 

  • Xu P.L. and Rummel R., 1994. Generalized ridge regression with applications in determination of potential fields. Manuscripta Geodaetica, 20, 8–20.

    Google Scholar 

  • Xu P.L., 1998. Truncated SVD methods for discrete linear ill-posed problems. Geophys. J. Int., 135, 505–514.

    Google Scholar 

  • Xu P.L., Fukuda Y. and Liu Y., 2006. Multiple parameter regularization: numerical solutions and applications to determination of geopotential from precise satelite orbits. J. Geodesy, 80, 17–27.

    Article  Google Scholar 

  • Xu P.L., 2009. Iterative generalized cross-validation for fusing heteroscedastic data of inverse illposed problems. Geophys. J. Int., 179, 182–200.

    Article  Google Scholar 

  • Yildiz H., 2012. A study of regional gravity field recovery from GOCE vertical gravity gradient data in the Auvergne test area using collocation. Stud. Geophys. Geod., 56, 171–184.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juraj Janák.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janák, J., Pitoňák, M. & Minarechová, Z. Regional quasigeoid from GOCE and terrestrial measurements. Stud Geophys Geod 58, 626–649 (2014). https://doi.org/10.1007/s11200-013-0543-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-013-0543-1

Keywords

Navigation