Skip to main content
Log in

Transition to postmodern science—related scientometric data

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

A change in scientific developments in recent decades is widely proclaimed which may be associated with terms like postmodern science or steady state science. This change is usually discussed from a more epistemological viewpoint. In order to enhance the understanding of the underlying key factors, bibliometric, demographic and Nobel Prize recipient data spanning of the last hundred years are considered and analyzed. It is found that in general the considered data point to a quasi-steady state in bibliometric developments of highly developed countries. For emerging countries, such a steady state is not yet attained; therefore, the research output in scientific journal articles is still expected to rise considerably. Consequences and interpretations of an ever growing research output in relation to the increasing age of Nobel Prize recipients are discussed and conclusions are drawn from the considered data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abraham P. (2000). Duplicate and salami publications. Journal of Postgraduate Medicine, 46, 67–69.

    Google Scholar 

  • Archibald, G., & Line, M. B. (1991). The size and growth of serial literature 1950–1987. In terms of the number of articles per serial. Scientometrics, 20, 173–196.

    Article  Google Scholar 

  • Carter, S., Gartner, S., Haines, M. R., Olmstead, A., Sutch, R., & Wright G. (Eds.) (2006). The historical statistics of the United States (Millennial Edn., Vols. 1–6). Cambridge University Press.

  • Carpenter, M., & Narin, F. (1981). The adequacy of the Science Citation Index (SCI) as an indicator of international scientific activity. Journal of the American Society for Information Science, 32, 430–439.

    Article  Google Scholar 

  • Cronin, B. (2001). Hyperauthorship: A postmodern perversion or evidence of a structural shift in scholarly communication practices? Journal of the American Society for Information Science and Technology, 52, 558–569.

    Article  Google Scholar 

  • de Solla Price, D. (1961). Science since Babylon. New Haven: Yale University Press.

    Google Scholar 

  • de Solla Price, D. (1963). Little science big science. NY: Columbia University Press.

    Google Scholar 

  • Fernandez-Cano, A., Torralbo, M., & Vallejo, M. (2004). Reconsidering Price’s model of scientific growth: An overview. Scientometrics, 61, 301–321.

    Article  Google Scholar 

  • Falkenheim, J. C., & Fiegener, M. K. (2007). Records fifth consecutive annual increase in U.S. doctoral awards, 2008. National Science Foundation, Directorate for Social, Behavioral, and Economic Sciences (http://www.nsf.gov/statistics/infbrief/nsf09307/).

  • Forman, P. (2007). The primacy of science in modernity, of technology in postmodernity, and of ideology in the history of technology. History and Technology, 23, 1–152.

    Article  Google Scholar 

  • Godin, B. (2006). On the origins of bibliometrics. Scientometrics, 68, 109–133.

    Article  Google Scholar 

  • Goonatilake, S. (1999). A post-European century in science. Futures, 31, 923–927.

    Article  Google Scholar 

  • Harvey, D. (1990). The condition of postmodernity. Oxford: Blackwell Publishing.

    Google Scholar 

  • Heylin, M. (2004). Science is becoming truly worldwide. Chemical and engineering news, 82, 38–42.

    Google Scholar 

  • Horgan, J. (2004). The end of science revisited. Computer, 37, 37–46.

    Article  Google Scholar 

  • Karazija, R., & Momkauskaita, A. (2004). The Nobel Prize in physics—regularities and tendencies. Scientometrics, 61, 191–205.

    Article  Google Scholar 

  • Kölbel, M. (2002). Wachstum der Wissenschaftsressourcen in Deutschland 1650–2000. Berichte zur Wissenschaftsgeschichte, 25, 1–23.

    Article  Google Scholar 

  • Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: University of Chicago.

    Google Scholar 

  • Lariviere, V., Archambault, E., & Gingras, Y. (2008). Long-term variations in the aging of scientific literature. From exponential growth to steady-state science (1900–2004). Journal of the American Society for Information Science and Technology, 59, 288–296.

    Article  Google Scholar 

  • Leydesdorff, L., & Wagner, C. (2002). Is the United States losing ground in science? A global perspective on the world science system. Scientometrics, 78, 23–36.

    Article  Google Scholar 

  • Lyotard, J.-F. (1984). The postmodern condition. A report on knowledge. Manchester: Manchester University Press.

    Google Scholar 

  • Leydesdorff, L., & Zhou, P. (2005). Are the contributions of China and Korea upsetting the world system of science? Scientometrics, 63, 617–630.

    Article  Google Scholar 

  • National Science Foundation. Science and engineering indicators. (2006). Two volumes, 2006. Arlington, VA. National Science Foundation (volume 1, NSB 06-01; volume 2, NSB 06-01A). Available online at http://www.nsf.gov/statistics/seind06/.

  • National Science Foundation. Science and engineering indicators. (2008). Two volumes, 2008. Arlington, VA. National Science Foundation (volume 1, NSB 08-01; volume 2, NSB 08-01A). Available online at http://www.nsf.gov/statistics/seind08/.

  • Phelan, T. J. (1999). A compendium of issues for citation analysis. Scientometrics, 45, 117–136.

    Article  Google Scholar 

  • Rip, A. (2004). Strategic research, post-modern universities, and research training. Higher Education Policy, 17, 153–166.

    Article  Google Scholar 

  • Tague, J., Beheshti, J., & Reespotter, L. (1981). The law of exponential-growth—evidence, implications and forecasts. Library Trends, 30, 125–145.

    Google Scholar 

  • Thurgood, L., Golladay, M. J., & Hill, S. T. (2006). U.S. doctorates in the 20th century, 2006. Special report, National Science Foundation (available at http://www.nsf.gov/statistics/nsf06319/start.cfm).

  • Vasconcelos, A. M. R., Sorenson, M. M., & Leta, J. (2009). A new input indicator for the assessment of science & technology research? Scientometrics, 80, 219–232.

    Article  Google Scholar 

  • Zhang, W., & Fuller, R. G. (1998). Nobel Prize winners in physics from 1901 to 1990. Simple statistics for physics teachers. Physics Education, 33, 196–203.

    Article  Google Scholar 

  • Ziman, J. M. (1994). Prometheus bound—science in a dynamic steady state. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Souk Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, CS., Lee, S.K. & England, M. Transition to postmodern science—related scientometric data. Scientometrics 84, 391–401 (2010). https://doi.org/10.1007/s11192-009-0119-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-009-0119-6

Keywords

Navigation