Skip to main content

Advertisement

Log in

Meta-Theoretical Contributions to the Constitution of a Model-Based Didactics of Science

Science & Education Aims and scope Submit manuscript

Abstract

There is nowadays consensus in the community of didactics of science (i.e. science education understood as an academic discipline) regarding the need to include the philosophy of science in didactical research, science teacher education, curriculum design, and the practice of science education in all educational levels. Some authors have identified an ever-increasing use of the concept of ‘theoretical model’, stemming from the so-called semantic view of scientific theories. However, it can be recognised that, in didactics of science, there are over-simplified transpositions of the idea of model (and of other meta-theoretical ideas). In this sense, contemporary philosophy of science is often blurred or distorted in the science education literature. In this paper, we address the discussion around some meta-theoretical concepts that are introduced into didactics of science due to their perceived educational value. We argue for the existence of a ‘semantic family’, and we characterise four different versions of semantic views existing within the family. In particular, we seek to contribute to establishing a model-based didactics of science mainly supported in this semantic family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. We use the expression ‘science education’ to refer to the practice of educating in science, whereas we call ‘didactics of science’ the academic discipline that reflects and investigates upon such practice (cf., Adúriz-Bravo and Izquierdo-Aymerich 2005). In accordance with this, we call ‘science educators’ the practitioners of science education; ‘didacticians of science’ would then be the academic researchers in our discipline. Equivalent expressions are standard in the main languages in continental Europe (e.g. French: didactique des sciences/didacticiens; German: Didaktik der Naturwissenschaften/Didaktiker; Spanish: didáctica de las ciencias/didactas).

  2. In the last 35 years, there is an ever-increasing amount of philosophical work on scientific models. In this article, we centre our attention on the literature that considers models as an essential component of scientific theories, namely the already mentioned semantic view or family. We are of course aware that there exist very rich recent developments on models that analyse them without a reference to theories—as being ‘independent’ of theories, ‘autonomous’, or ‘mediators’ between reality and theories. For such views, which would demand a whole paper of their own, see e.g. Cartwright et al. (1995), Morgan and Morrison (1999), Morrison (1999) and Weisberg (2013).

  3. However, it is only fair to make clear that just very few—if any—philosophical schools of science take as a case of study their influence on science teaching.

  4. Other versions are: the partial structures approach of N. C. A. Da Costa, S. French, J. Ladyman and O. Bueno (Da Costa and French 1990, 2003; Bueno 1997; French and Ladyman 1999), the approach proposed by R. Torretti (1990), and many ‘European versions’ of the semantic view, such as those of M.L. Dalla Chiara and G. Toraldo di Francia (1973), M. Przełecki (1969) and R. Wójcicki (1976), G. Ludwig (1970, 1978), and E. Scheibe (1997, 1999, 2001).

  5. The components of theories (i.e. constituting elements that give them their identity) are boldfaced in the ‘specified’ schemes of Sect. 4.

  6. In addition, in some Anglo-Saxon circles the labels ‘German structuralism’ or ‘German structuralist school’ are also used.

  7. The reader who would like to have access to an extensive and technically precise presentation of the programme should consult the above-mentioned book by Balzer et al. (1987). For those who want to have a briefer and more informal presentation, we recommend Moulines (2002).

  8. The concept of theory-element may be seen as a precision and elaboration of a Kuhnian idea: “A theory consists, among other things, of verbal and symbolic generalizations together with examples of their function in use” (Kuhn 1969, p. 501, emphasis in the original).

  9. It is worth noting that meta-theoretical structuralism per se is neutral with respect to the issue of scientific realism (see Sneed 1983; Stegmüller 1986)—understood either in terms of the ‘true description’ (or approximately true description) of the ‘real world’ given by a theory or of the ‘reality’ of the denotata of the T-theoretical terms of a theory—although there are supporters of this approach that have stated the problem within this framework and argued for, as well as against, scientific realism.

  10. The concept of a theory-net may be seen, again, as a precision and elaboration of another Kuhnian idea, namely the ‘general principle plus specification relation’ idea: “[…] generalizations [like f = ma] are not so much generalizations as generalisation sketches, schematic forms whose detailed symbolic expression varies from one application to the next. For the problem of free fall, f = ma becomes mg = md2 s/dt 2. For the simple pendulum, it becomes mgsinθ = –md2 s/dt 2. For coupled harmonic oscillators it becomes two equations, the first of which may be written m 1d2 s 1/dt 2 + k 1 s 1 = k 2(d + s 2 − s 1). More interesting mechanical problems, for example the motion of a gyroscope, would display still greater disparity between f = ma and the actual symbolic generalization to which logic and mathematics are applied” (Kuhn 1969, p. 465).

  11. Once again, the concept of a theory-evolution may be seen as a precision of some other Kuhnian idea, namely that of normal science.

  12. Some authors have recognised the rich development of the structuralist programme. Nancy Cartwright suggests that, in comparison with other semantic approaches, “the German structuralists undoubtedly offer the most satisfactory, detailed and well-illustrated account of the structure of scientific theories on offer” (Cartwright 2008, p. 65). Sebastian Enqvist makes a similar point by claiming that “[t]he structuralist model of theories is impressive in two respects: first, it presents a very detailed analysis of what may be called the deep structure of an empirical theory. Second, it has been shown that a range of actual scientific theories can be reconstructed as theory nets” (Enqvist 2011, p. 107).

  13. See, for example, the three “Bibliographies of Structuralism” (Diederich et al. 1989, 1994; Abreu et al. 2013), as well as Balzer et al. (2000).

  14. This approach can also be part of the meta-theoretical training of other professionals, for example in the formation of philosophers of science and general philosophers, or in other degrees that include contents of the philosophy of science in their curricula. It would then be necessary to adapt it to match the needs of each audience.

References

  • Abreu, C., Lorenzano, P., & Moulines, C. U. (Eds.). (2013). Bibliography of structuralism III (1995–2012 and Additions). Metatheoria, 3, 87–144.

  • Adams, E. W. (1955). Axiomatic foundations of rigid body mechanics. Doctoral thesis, Stanford University.

  • Adams, E. W. (1959). The foundations of rigid body mechanics and the derivation of its laws from those of particle mechanics. In L. Henkin, P. Suppes, & A. Tarski (Eds.), The axiomatic method (pp. 250–265). Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Adúriz-Bravo, A. (2001). Integración de la Epistemología en la Formación del Profesorado de Ciencias. Doctoral thesis, Bellaterra: Universitat Autònoma de Barcelona.

  • Adúriz-Bravo, A. (2005). Una Introducción a la Naturaleza de la Ciencia: La Epistemología en la Enseñanza de las Ciencias Naturales. Buenos Aires: Fondo de Cultura Económica.

    Google Scholar 

  • Adúriz-Bravo, A. (2011). Epistemología para el Profesorado de Física: Operaciones Transpositivas y Creación de una Actividad Metacientífica Escolar. Revista de Enseñanza de la Física, 24(1), 7–20.

    Google Scholar 

  • Adúriz-Bravo, A. (2013). A semantic view of scientific models for science education. Science & Education, 22(7), 1593–1611.

    Article  Google Scholar 

  • Adúriz-Bravo, A., & Izquierdo-Aymerich, M. (2005). Utilising the ‘3P-model’ to characterise the discipline of didactics of science. Science & Education, 14(1), 29–41.

    Article  Google Scholar 

  • Ariza, Y. (2015). Introducción de la metateoría estructuralista en la didáctica de las ciencias: Didáctica modeloteórica de las ciencias. Doctoral thesis, Buenos Aires: Universidad Nacional de Tres de Febrero.

  • Ariza, Y., Lorenzano, P., & Adúriz-Bravo, A. (2010). Dificultades en la introducción de la “familia semanticista” a la didáctica de las ciencias naturales. Revista Latinoamericana de Estudios Educativos, 6(1), 59–74.

    Google Scholar 

  • Balzer, W. (1978). Empirische Geometrie und Raum-Zeit-Theorie in mengentheo-retischer Darstellung. Kronberg: Scriptor.

    Google Scholar 

  • Balzer, W. (1982). Empirische theorien: Modelle, strukturen, beispiele. Braunschweig: Vieweg.

    Book  Google Scholar 

  • Balzer, W. (1985). Theorie und Messung. Berlin: Springer.

    Book  Google Scholar 

  • Balzer, W., & Moulines, C. U. (Eds.). (1996). Structuralist theory of science: Focal issues, new results. Berlin: de Gruyter.

    Google Scholar 

  • Balzer, W., Moulines, C. U., & Sneed, J. D. (1987). An architectonic for science. The structuralist program. Dordrecht: Reidel.

    Book  Google Scholar 

  • Balzer, W., Moulines, C. U., & Sneed, J. D. (Eds.). (2000). Structuralist knowledge representation: Paradigmatic examples. Amsterdam: Rodopi.

    Google Scholar 

  • Beth, E. W. (1948a). Natuurphilosophie. Gorinchem: Noorduijn.

    Google Scholar 

  • Beth, E. W. (1948b). Analyse sémantique des théories physiques. Synthese, 7, 206–207.

    Google Scholar 

  • Beth, E. W. (1949). Towards an up-to-date philosophy of the natural sciences. Methodos, 1, 178–185.

    Google Scholar 

  • Beth, E. W. (1960). Semantics of physical theories. Synthese, 12, 172–175.

    Article  Google Scholar 

  • Birkhoff, G., & von Neumann, J. (1936). The logic of quantum mechanics. Annals of Mathematics, 37, 823–843.

    Article  Google Scholar 

  • Bueno, O. (1997). Empirical adequacy: A partial structures approach. Studies in History and Philosophy of Science, 28, 585–610.

    Article  Google Scholar 

  • Cartwright, N. (2008). Reply to Ulrich Gahde. In S. Hartmann, C. Hoefer, & L. Bovens (Eds.), Nancy Cartwright’s philosophy of science (pp. 65–66). New York: Routledge.

    Google Scholar 

  • Cartwright, N., Shomar, T., & Suárez, M. (1995). The tool box of science: Tools for building of models with a superconductivity example. In W. E. Herfel, et al. (Eds.), Theories and models in scientific processes (pp. 27–36). Amsterdam: Rodopi.

    Google Scholar 

  • Chamizo, J. A. (2010). Una tipología de los modelos para la enseñanza de las ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 7(1), 26–41.

    Google Scholar 

  • Chamizo, J. A. (2013). A new definition of models and modeling in chemistry’s teaching. Science & Education, 22(7), 1613–1632.

    Article  Google Scholar 

  • Clough, M. P. (2008). Teaching the nature of science to secondary and post-secondary students: Questions rather than tenets. The California Journal of Science Education, 8(2), 31–40.

    Google Scholar 

  • Da Costa, N., & French, S. (1990). The model-theoretic approach in philosophy of science. Philosophy of Science, 57, 248–265.

    Article  Google Scholar 

  • Da Costa, N., & French, S. (2003). Science and partial truth. A unitary approach to models and scientific reasoning. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Dalla Chiara, M. L., & Toraldo de Francia, G. (1973). A logical analysis of physical theories. Rivista di Nuovo Cimento, 3, 1–20.

    Article  Google Scholar 

  • Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programmes. Science & Education, 16(7), 725–749.

    Article  Google Scholar 

  • Diederich, W. (1996). Structuralism as developed within the model-theoretical approach in the philosophy of science. In W. Balzer & C. U. Moulines (Eds.), Structuralist theory of science: Focal issues, new results (pp. 15–22). Berlin: de Gruyter.

    Google Scholar 

  • Diederich, W., Ibarra, A., & Mormann, T. (1989). Bibliography of structuralism I. Erkenntnis, 30, 387–407.

    Article  Google Scholar 

  • Diederich, W., Ibarra, A., & Mormann, T. (1994). Bibliography of structuralism II (1989–1994 and additions). Erkenntnis, 41, 403–418.

    Article  Google Scholar 

  • Enqvist, S. (2011). A structuralist framework for the logic of theory change. In E. J. Olsson & S. Enqvist (Eds.), Belief revision meets philosophy of science, logic, epistemology, and the unity of science (pp. 105–135). Dordrecht: Springer.

    Google Scholar 

  • Erduran, S., & Duschl, R. (2004). Interdisciplinary characterizations of models and the nature of chemical knowledge in the classroom. Studies in Science Education, 40(1), 105–138.

    Article  Google Scholar 

  • Estany, A. (1993). Introducción a la filosofía de la ciencia. Barcelona: Crítica.

    Google Scholar 

  • French, S., & Ladyman, J. (1999). Reinflating the semantic approach. International Studies in the Philosophy of Science, 13(2), 103–121.

    Article  Google Scholar 

  • Frigg, R. (2006). Scientific representation and the semantic view of theories. Theoria, 55, 37–53.

    Google Scholar 

  • Giere, R.N. (1979). Understanding scientific reasoning. New York: Holt/Reinhart and Winston; 2nd ed., 1984; 3rd revised ed., 1991; 4th ed., 1997; 5th revised ed. 2006 (with J. Bickle & R.F. Mauldin).

  • Giere, R. N. (1983). Testing theoretical hypotheses. In J. Earman (Ed.), Testing scientific theories (pp. 269–298). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Giere, R. N. (1985). Constructive realism. In P. M. Churchland & C. Hooker (Eds.), Images of science. Essays on realism and empiricism with a reply from Bas C. van Fraassen (pp. 75–98). Chicago: University of Chicago Press.

    Google Scholar 

  • Giere, R. N. (1988). Explaining science: A cognitive approach. Chicago: The University of Chicago Press.

    Book  Google Scholar 

  • Giere, R. N. (1994). The cognitive structure of scientific theories. Philosophy of Science, 61, 276–296.

    Article  Google Scholar 

  • Gilbert, J. K., & Boulter, C. J. (Eds.). (2000). Developing models in science education. Dordrecht: Kluwer.

    Google Scholar 

  • Izquierdo-Aymerich, M., & Adúriz-Bravo, A. (2003). Epistemological foundations of school science. Science & Education, 12(1), 27–43.

    Article  Google Scholar 

  • Khine, M. S., & Saleh, I. M. (2011). Models and modeling: Cognitive tools for scientific enquiry. Dordrecht: Springer.

    Book  Google Scholar 

  • Kuhn, T.S. (1962.1970). The structure of scientific revolutions (2nd edn.). Chicago: Chicago University Press.

  • Kuhn, T. S. (1969). Second thoughts on paradigms. In F. Suppe (Ed.), The structure of scientific theories (2nd ed., pp. 459–482). Urbana, IL: University of Illinois Press.

    Google Scholar 

  • Lakatos, I. (1971). History of science and its rational reconstruction. In R. C. Buck & R. S. Cohen (Eds.), PSA 1970, Boston studies in the philosophy of science (Vol. 8, pp. 174–182). Dordrecht: Reidel.

    Google Scholar 

  • Lakatos, I. (1978). The methodology of scientific research programmes (Vol. 1). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lorenzano, P. (2013). The semantic conception and the structuralist view of theories: A critique of Suppe’s criticisms. Studies in History and Philosophy of Science, 44, 600–607.

    Article  Google Scholar 

  • Ludwig, G. (1970). Deutung des Begriffs ‘Physikalische Theorie’ und axiomatische Grundlegung der Hilbertraumstruktur der Quantenmechanik durch Hauptsätze des Messens. Lecture Notes in Physics, Bd. 4. Berlin: Springer.

  • Ludwig, G. (1978). Die Grundstrukturen einer physikalischen Theorie. Berlin: Springer.

    Book  Google Scholar 

  • Matthews, M. R. (1994). Science teaching: The role of history and philosophy of science. Nueva York: Routledge.

    Google Scholar 

  • McComas, W. F., Clough, M. P., & Almazroa, H. (1998). The role and character of the nature of science in science education. In W. F. McComas (Ed.), The nature of science in science education: Rationales and strategies (pp. 3–39). Dordrecht: Kluwer.

    Google Scholar 

  • McKinsey, J. C. C., Sugar, A., & Suppes, P. (1953). Axiomatic foundations of classical particle mechanics. Journal of Rational Mechanics and Analysis, 2, 253–272.

    Google Scholar 

  • Morgan, M., & Morrison, M. (Eds.). (1999). Models as mediators. Cambridge: Cambridge University Press.

    Google Scholar 

  • Morrison, M. (1999). Models and autonomous agents. In M. Morgan & M. Morrison (Eds.), Models as mediators (pp. 38–65). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Moulines, C. U. (1975). A logical reconstruction of simple equilibrium thermodynamics. Erkenntnis, 9(1), 101–130.

    Article  Google Scholar 

  • Moulines, C. U. (1982). Exploraciones metacientíficas. Madrid: Alianza.

    Google Scholar 

  • Moulines, C. U. (2002). Introduction: Structuralism as a program for modelling theoretical science. Synthese, 130, 1–11.

    Article  Google Scholar 

  • Moulines, C. U. (2008). Die Entwicklung der modernen Wissenschaftstheorie (1890–2000): Eine historische Einführung. Münster: LIT-Verlag.

    Google Scholar 

  • Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109–1130.

    Article  Google Scholar 

  • Passmore, C., Gouvea, J. S., & Giere, R. N. (2014). Models in science and in learning science: Focusing scientific practice on sense-making. In M. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1171–1202). Dordrecht: Springer.

    Google Scholar 

  • Przełecki, M. (1969). The logic of empirical theories. London: Routledge & Kegan Paul.

    Google Scholar 

  • Scheibe, E. (1997). Die Reduktion physikalischer Theorien, Teil I, Grundlagen und elementare Theorie. Berlin: Springer.

    Book  Google Scholar 

  • Scheibe, E. (1999). Die Reduktion physikalischer Theorien, Teil II, Inkommensurabilität und Grenzfallreduktion. Berlin: Springer.

    Book  Google Scholar 

  • Scheibe, E. (2001). Between rationalism and empiricism. In B. Falkenburg (Ed.), Selected papers in the philosophy of physics. Berlin: Springer.

    Google Scholar 

  • Sneed, J. D. (1971). The logical structure of mathematical physics. Dordrecht: Reidel.

    Book  Google Scholar 

  • Sneed, J. D. (1983). Structuralism and scientific realism. Erkenntnis, 19, 345–370.

    Article  Google Scholar 

  • Stegmüller, W. (1973). Theorienstrukturen und Theoriendynamik. Berlin: Springer.

    Google Scholar 

  • Stegmüller, W. (1979). The structuralist view of theories. New York: Springer.

    Book  Google Scholar 

  • Stegmüller, W. (1986). Die Entwicklung des neuen Strukturalismus seit 1973. Berlin: Springer.

    Google Scholar 

  • Suppe, F. (1967). The meaning and use of models in mathematics and the exact sciences. Doctoral Thesis, Michigan: University of Michigan.

  • Suppe, F. (1972). What’s wrong with the received view on the structure of scientific theories? Philosophy of Science, 39, 1–19.

    Article  Google Scholar 

  • Suppe, F. (1974). The search for philosophical understanding of scientific theories. In F. Suppe (Ed.), The structure of scientific theories (pp. 3–241). Urbana, IL: The University of Illinois Press.

    Google Scholar 

  • Suppe, F. (1977). Afterword. In F. Suppe (Ed.), The structure of scientific theories (2nd ed., pp. 617–730). Urbana: University of Illinois Press.

    Google Scholar 

  • Suppe, F. (1989). The semantic conception of theories and scientific realism. Urbana, IL: University of Illinois Press.

    Google Scholar 

  • Suppe, F. (1998). Theories, scientific. In E. Craig (Ed.), Routledge encyclopedia of philosophy (Vol. 9, pp. 344–355). London: Routledge.

    Google Scholar 

  • Suppes, P. (1957). Introduction to logic. New York: Van Nostrand.

    Google Scholar 

  • Suppes, P. (1962). Models of data. In E. Nagel, P. Suppes, & A. Tarski (Eds.), Logic, methodology and philosophy of science: Proceedings of the 1960 international congress (pp. 252–261). Stanford: Stanford University Press.

    Google Scholar 

  • Suppes, P. (1969). Studies in the methodology and foundations of science: Selected papers from 1951 to 1969. Dordrecht: Reidel.

    Book  Google Scholar 

  • Suppes, P. (1970). Set-theoretical structures in science. Stanford: Stanford University.

    Google Scholar 

  • Suppes, P. (2002). Representation and invariance of scientific structures. Stanford: Center for the Study of Language and Information (CSLI).

    Google Scholar 

  • Torretti, R. (1990). Creative understanding: Philosophical reflections on physics. Chicago: The University of Chicago Press.

    Book  Google Scholar 

  • Toulmin, S. (1972). Human understanding: The collective use and development of concepts (Vol. 1). Oxford: Clarendon Press.

    Google Scholar 

  • van Fraassen, B. (1970). On the extension of Beth’s semantics of physical theories. Philosophy of Science, 37(3), 325–339.

    Article  Google Scholar 

  • van Fraassen, B. (1972). A formal approach to the philosophy of science. In R. Colodny (Ed.), Paradigms and paradoxes (pp. 303–366). Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  • van Fraassen, B. (1974). The formal representation of physical quantities. In R. S. Cohen & M. W. Wartofsky (Eds.), Logical and epistemological studies in contemporary physics (pp. 196–209). Dordrecht: Reidel.

    Chapter  Google Scholar 

  • van Fraassen, B. (1976). To save the phenomena. The Journal of Philosophy, 73(18), 623–632.

    Article  Google Scholar 

  • van Fraassen, B. (1980). The scientific image. Oxford: Clarendon Press.

    Book  Google Scholar 

  • van Fraassen, B. (1987). The semantic approach to scientific theories. In N. Nersessian (Ed.), The process of science (pp. 105–124). Dordrecht: Nijhoff.

    Chapter  Google Scholar 

  • van Fraassen, B. (1989). Laws and symmetry. Oxford: Clarendon Press/Oxford University Press.

    Book  Google Scholar 

  • van Fraassen, B. (1997). Structure and perspective: Philosophical perplexity and paradox. In M. L. Dalla Chiara, et al. (Eds.), Logic and scientific methods (pp. 511–530). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • van Fraassen, B. (2008). Scientific representation: Paradoxes of perspectives. Oxford: Oxford University Press.

    Book  Google Scholar 

  • von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.

    Google Scholar 

  • Weisberg, M. (2013). Simulation and similarity: Using models to understand the world. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Weyl, H. (1927). Quantenmechanik und Gruppentheorie. Zeitschrift für Physik, 46, 1–46.

    Article  Google Scholar 

  • Weyl, H. (1928). Gruppentheorie und Quantenmechanik. Leipzig: Hirzel; 2. Auflage, 1931.

  • Wójcicki, R. (1976). Some Problems of formal methodology of science. In M. Przełecki, K. Szaniawski, & R. Wójcicki (Eds.), Formal methods in the methodology of empirical sciences (pp. 9–18). Dordrecht: Reidel.

    Chapter  Google Scholar 

Download references

Acknowledgments

Research reported in this article was supported by Research Grants FFI2012-37354/CONSOLIDER INGENIO CSD2009-0056 (Spain), FFI2013-41415-P (Spain), PICT-2014-1741 and PICT-2013-0503 (ANPCyT, Argentina), and PIP 112-201101-01135 (CONICET, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yefrin Ariza.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ariza, Y., Lorenzano, P. & Adúriz-Bravo, A. Meta-Theoretical Contributions to the Constitution of a Model-Based Didactics of Science. Sci & Educ 25, 747–773 (2016). https://doi.org/10.1007/s11191-016-9845-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-016-9845-3

Keywords

Navigation