Skip to main content
Log in

Different Levels of the Meaning of Wave-Particle Duality and a Suspensive Perspective on the Interpretation of Quantum Theory

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

There is no consensus on the genuine meaning of wave-particle duality and the interpretation of quantum theory. How can we teach duality and quantum theory despite this lack of consensus? This study attempts to answer this question. This research argues that reality issues are at the core of both the endless debates concerning the interpretation of quantum theory. As practical instructional frameworks, this study suggests three different levels of meaning for duality as well as a new suspensive perspective. The key idea behind these notions is a distinction between the prediction rule and the reality-related interpretation, instead of a traditional division between formalism and interpretation. After elaborating upon those notions, this study compares this new suspensive perspective with other interpretations or educational stances concerning the interpretation of quantum theory. Several practical guides for the better instruction of duality and quantum theory as well as its implication on students’ understanding of the topics are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Ellen Karoline Henriksen, Carl Angell, … Berit Bungum

Notes

  1. See for instance: Einstein et al. (1935), Bohr (1935), Bell (1964), Zhang (1998), Bunge (2003, 2012).

  2. See for instance: Fischler and Lichifeldt (1992), Johnston et al. (1998), Müller and Wiesner (2002), Olsen (2002), Wuttiprom et al. (2009), McKagan et al. (2010).

  3. See for instance: Ambrose et al. (1999), Thacker (2003), McKagan et al. (2010).

  4. See for instance: Fischler and Lichifeldt (1992), Petri and Niedderer (1998), Kalkanis et al. (2003), Falk (2007), McKagan et al. (2008a), Park and Light (2009).

  5. See for instance: Mckagan et al. (2010), Baily and Finkelstein (2009, 2010a, b).

  6. One can refer to Albert’ book (1992), Quantum Theory and Experience for a description of the advantages and shortcomings of the interpretations.

  7. See for instance: Greca and Freire (2003), Park and Light (2009), Baily (2011).

  8. See for instance: Fischler and Lichifeldt (1992), Müller and Wiesner (2002), Hobson (2005), Singh (2008).

  9. See for instance: Jones (1991), Feynman et al. (1963), Müller and Wiesner (2002).

  10. See for instance: Fischler and Lichifeldt (1992), Petri and Niedderer (1998), Mannila et al. (2002), Greca and Freire (2003), Kalkanis et al. (2003), McKagan et al. (2008a), Park and Light (2009).

References

  • Albert, D. Z. (1992). Quantum mechanics and experience. Cambridge: Harvard University Press.

    Google Scholar 

  • Ambrose, B. S., Shaffer, P. S., Steinberg, R. N., & McDermott, L. C. (1999). An investigation of student understanding of single-slit diffraction and double-slit interference. American Journal of Physics, 67(2), 146–155.

    Article  Google Scholar 

  • Aspect, A., Grangier, P., & Roger, G. (1982). Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A new violation of Bell’s inequalities. Physical Review Letters, 49, 91–94.

    Article  Google Scholar 

  • Baily, C. (2011). Perspectives in quantum physics: Epistemological, ontological and pedagogical. Doctorial Thesis, University of Colorado, Boulder, United States.

  • Baily, C., & Finkelstein, N. D. (2009). Development of quantum perspectives in modern physics. Physical Review Special Topic-Physics Education Research, 5, 010106.

    Article  Google Scholar 

  • Baily, C., & Finkelstein, N. D. (2010a). Teaching and understanding of quantum interpretations in modern physics courses. Physical Review Special Topic-Physics Education Research, 6, 010101.

    Article  Google Scholar 

  • Baily, C., & Finkelstein, N. D. (2010b). Refined characterization of student perspectives on quantum theory. Physical Review Special Topic-Physics Education Research, 6, 020113.

    Article  Google Scholar 

  • Ballentine, L. E. (1970). The statistical interpretation of quantum mechanics. Reviews of Modern Physics, 43, 358–381.

    Article  Google Scholar 

  • Bell, J. S. (1964). On the Einstein Podolsky Rosen paradox. Physics, 1, 195–200.

    Google Scholar 

  • Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of “hidden” variables, I and II. Physical Review, 85, 166–193.

    Article  Google Scholar 

  • Bohr, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 48, 696–702.

    Article  Google Scholar 

  • Bouwmeester, D., Pan, J.-W., Mattle, K., Manfred, E., Weinfurter, H., & Zeilinger, A. (1997). Experimental quantum teleportation. Nature, 390, 575–579.

    Article  Google Scholar 

  • Brukner, Č., Aspelmeyer, M., & Zeilinger, A. (2005). Complementarity and Information in “Delayed-choice for Entanglement Swapping”. Foundations of Physics, 35(11), 1909–1919.

    Article  Google Scholar 

  • Bunge, M. (2003). Twenty-five centuries of quantum physics: From Pythagoras to us, and from subjectivism to realism. Science & Education, 12(5–6), 445–466.

    Article  Google Scholar 

  • Bunge, M. (2012). Does quantum physics refute realism, materialism, and determinism? Science & Education, 21, 1601–1610.

    Article  Google Scholar 

  • Cheong, Y. W., & Song, J. (2011). Analysis of textbook’s expression about wave-particle duality. New Physics: Sae Mulli, 61, 479–488.

    Google Scholar 

  • Chiaverini, J., et al. (2004). Realization of quantum error correction. Nature, 432, 602–605.

    Article  Google Scholar 

  • Cordero, A. (2003). Understanding quantum physics. Science & Education, 12(5–6), 503–511.

    Article  Google Scholar 

  • Cordero, A. (2012). Mario Bunge’s scientific realism. Science & Education, 21, 1419–1435.

    Article  Google Scholar 

  • Cushing, J. T. (1995). Hermeneutics, underdetermination and quantum mechanics. Science & Education, 4, 137–146.

    Article  Google Scholar 

  • Cushing, J. T. (1998). Philosophical concepts in physics: The historical relation between philosophy and scientific theories (Chap. 23). New York: Cambridge University Press.

  • Dickson, M. (2007). Non-relativistic quantum mechanics. In J. Butterfield & J. Earman (Eds.), Philosophy of Physics Part A. Amsterdam: Elsevier.

    Google Scholar 

  • Dubson, M., Goldhaber, S., Pollock, S., & Perkins, K. (2009). Faculty disagreement about the teaching of quantum mechanics. AIP Conference Proceedings, 1179, 137–140.

    Article  Google Scholar 

  • Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47, 777–780.

    Article  Google Scholar 

  • Everett, H. (1957). “Relative state” formulation of quantum mechanics. Reviews of Modern Physics, 29, 454–462.

    Article  Google Scholar 

  • Falk, J. (2007). Students’ depictions of quantum mechanics: A contemporary review and some implications for research and teaching, Licentiate Thesis, Uppsala University, Uppsala, Sweden.

  • Faye, J. (2008). Copenhagen interpretation of quantum mechanics. In: E. N. Zalta (Ed.), The stanford encyclopedia of philosophy. http://plato.stanford.edu/entries/qm-copenhagn.

  • Feynman, R. P., Leighton, R. B., & Sands, M. (1963). The Feynman lectures on physics (Vol. 3, Chap. 1). New York: Addison-Wesley.

  • Fischler, H., & Lichifeldt, M. (1992). Modern physics and students’ conceptions. International Journal of Science Education, 14(2), 181–190.

    Article  Google Scholar 

  • Ghirardi, G. C., Grassi, I. R., & Benatti, F. (1995). Describing the macroscopic world: Closing the circle within the dynamical reduction program. Foundations of Physics, 25(1), 5–38.

    Article  Google Scholar 

  • Giere, R. N. (2006). Scientific perspectivism (Chap. 1). University of Chicago Press, London.

  • Gisin, N. (1984). Quantum measurements and stochastic processes. Physical Review Letters, 52, 1657–1660.

    Article  Google Scholar 

  • Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2002). Quantum cryptography. Reviews of Modern Physics, 74, 145–195.

    Article  Google Scholar 

  • Greca, I. M., & Freire, O, Jr. (2003). Does an emphasis on the concept of quantum states enhance students’ understanding of quantum mechanics. Science & Education, 12, 541–557.

    Article  Google Scholar 

  • Hacking, I. (1991). Experimentation and realism. In R. Boyd, P. Gasper, & J. D. Tout (Eds.), The philosophy of science. Cambridge: MIT Press.

    Google Scholar 

  • Hanson, N. R. (1961). Patterns of discovery: An inquiry into the conceptual foundations of science (Chap. 1). Cambridge University Press, London.

  • Hobson, A. (2005). Electrons as field quanta: A better way to teach quantum physics in introductory general physics course. American Journal of Physics, 73(7), 630–634.

    Article  Google Scholar 

  • Hodson, D. (2008). Toward scientific literacy: A teachers’ guide to the history, philosophy and sociology of science (Chap. 6). Rotterdam: Sense Publishers.

  • Jammer, M. (1989). The conceptual development of quantum mechanics. Los Angeles: Tomash Publishers.

    Google Scholar 

  • Johnston, I. D., Crwaford, K., & Fletcher, P. R. (1998). Students difficulties in learning quantum mechanics. International Journal of Science Education, 20(4), 427–446.

    Article  Google Scholar 

  • Jones, D. G. (1991). Teaching modern physics-misconceptions of the photon that can damage understanding. Physics Education, 26, 93–98.

    Article  Google Scholar 

  • Kalkanis, G., Hadzidaki, P., & Stavrou, D. (2003). An instructional model for radical conceptual change towards quantum mechanics concepts. Science Education, 87(2), 257–280.

    Article  Google Scholar 

  • Karakostas, V., & Hadzidaki, P. (2005). Realism vs. constructivism in contemporary physics: The impact of the debate on the understanding of quantum theory and its instructional process. Science & Education, 14, 607–629.

    Article  Google Scholar 

  • Klassen, S. (2010). The photoelectric effect: Reconstructing the story for the physics classroom. Science & Education, 20(7–8), 719–731.

    Google Scholar 

  • Kragh, H. (2002). Quantum generation (Chap. 11 & 14). Prinston, NJ: Prinston University Press.

  • Kuhn, T. (1970). The structure of scientific revolutions (Chap. 7). Chicago: University of Chicago Press.

  • Kuipers, Theo A. F. (2000). From instrumentalism to constructive realism: On some relations between confirmation, empirical progress, and truth approximation (pp. 1–14). Boston: Kluwer.

    Book  Google Scholar 

  • Liboff, R. (2002). Introductory quantum mechanics (4th ed., Chap. 3). New York: Addison-Wesley.

  • Mannila, K., Koponen, I. T., & Niskanen, J. A. (2002). Building a picture of students’ conceptions of wave- and particle-like properties of quantum entities. European Journal of Physics, 23, 45–53.

    Article  Google Scholar 

  • McKagan, S. B., Handley, W., Perkins, K. K., & Wieman, C. E. (2009). A research-based curriculum for teaching the photoelectric effect. American Journal of Physics, 77, 87–94.

    Article  Google Scholar 

  • McKagan, S. B., Perkins, K. K., & Wieman, C. E. (2008a). Why we should teach the Bohr model and how to teach it effectively. Physical Review Special Topic-Physics Education Research, 4, 010103.

    Article  Google Scholar 

  • McKagan, S. B., Perkins, K. K., & Wieman, C. E. (2008b). Developing and researching PhET simulations for teaching quantum mechanics. American Journal of Physics, 76, 406–418.

    Article  Google Scholar 

  • McKagan, S. B., Perkins, K. K., & Wieman, C. E. (2010). Design and validation of the quantum mechanics conceptual survey. Physical Review Special Topic-Physics Education Research, 6, 020121.

    Article  Google Scholar 

  • Mehra, J., & Rechenberg, H. (1982). The quantum theory of Planck, Einstein, Bohr, and Sommerfeld: Its foundation and the rise of its difficulties 1900–1925 (pp. 511–532). New York: Springer.

    Book  Google Scholar 

  • Müller, R., & Wiesner, H. (2002). Teaching quantum mechanics on an introductory level. American Journal of Physics, 70(3), 200–209.

    Article  Google Scholar 

  • Niaz, M., Klassen, S., McMillan, B., & Metz, D. (2010). Reconstruction of the history of the photoelectric effect and its implications for general physics textbooks. Science Education, 94(5), 903–931.

    Article  Google Scholar 

  • Olsen, R. V. (2002). Introducing quantum mechanics in the upper secondary school: A study in Norway. International Journal of Science Education, 24(6), 565–574.

    Article  Google Scholar 

  • Ozawa, M. (2003). Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement. Physical Review A, 67, 042105.

    Article  Google Scholar 

  • Park, E. J., & Light, G. (2009). Identifying atomic structure as a threshold concept: Student mental models and troublesomeness. International Journal of Science Education, 31(2), 233–258.

    Article  Google Scholar 

  • Petri, J., & Niedderer, H. (1998). A learning pathway in high-school level quantum atomic physics. International Journal of Science Education, 20(9), 1075–1088.

    Article  Google Scholar 

  • Pospiech, G. (2001). Experiences with a modern course in quantum physics. In H. Behrendt, et al. (Eds.), Research in science education-past, present, and future. Dordrecht: Kluwer.

    Google Scholar 

  • Rosenfeld, L. (1963). The epistemological conflict between Einstein and Bohr. Zeitschrift für Physik, 171, 242–245.

    Article  Google Scholar 

  • Singh, C. (2008). Interactive learning tutorials on quantum mechanics. American Journal of Physics, 76, 400–405.

    Article  Google Scholar 

  • Thacker, B. A. (2003). A study of the nature of students’ models of microscopic processes in the context of modern physics experiments. American Journal of Physics, 71(6), 599–606.

    Article  Google Scholar 

  • Wuttiprom, S., Sharma, M. D., Johnston, I. D., Chitaree, R., & Soankwan, C. (2009). Development and use of a conceptual survey in introductory quantum physics. International Journal of Science Education, 31(5), 631–654.

    Article  Google Scholar 

  • Zbinden, H., Brendel, J., Tittel, W., & Gisin, N. (2001). Experimental test of relativistic quantum state collapse with moving reference frames. Journal of Physics A, 34, 7103–7111.

    Article  Google Scholar 

  • Zeilinger, A. (1999). Experiment and the foundations of quantum physics. Review of Modern Physics, 71, S288–S297.

    Article  Google Scholar 

  • Zhang, H. I. (1998). Epistemic subject and epistemological structure of science. Korean Journal for Philosophy of Science, 1(1), 1–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwoong Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheong, Y.W., Song, J. Different Levels of the Meaning of Wave-Particle Duality and a Suspensive Perspective on the Interpretation of Quantum Theory. Sci & Educ 23, 1011–1030 (2014). https://doi.org/10.1007/s11191-013-9633-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-013-9633-2

Keywords

Navigation