Skip to main content
Log in

Mendel in the Modern Classroom

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

Mendel is an icon in the history of genetics and part of our common culture and modern biology instruction. The aim of this paper is to summarize the place of Mendel in the modern biology classroom. In the present article we will identify key issues that make Mendel relevant in the classroom today. First, we recount some of the historical controversies that have relevance to modern curricular design, such as Fisher’s (Ann Sci 1:115–137, 1936/2008) claim that Mendel’s data were too good to be true. We also address questions about Mendel’s status as the father of genetics as well as questions about the sequencing of Mendel’s work in genetics instruction in relation to modern molecular genetics and evolution. Next, we present a systematic set of examples of research based approaches to the use of Mendel in the modern classroom along with criticisms of these designs and questions about the historical accuracy of the story of Mendel as presented in the typical classroom. Finally, we identify gaps in our understanding in need of further study and present a selected set of resources that, along with the references cited, should be valuable to science educators interested in further study of the story of Mendel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Two genes are “syntenous” when they are located on the same chromosome. They are “linked” if they are located close enough to tend to be inherited together (i.e., they separate <50 % of the time during meiosis).

  2. Pangenesis is the idea that small particles which Darwin called gemmules are formed by cells in the body and that they diffuse and aggregate in the reproductive organs to determine the observable features in the offspring (Bizzo 1999; Bizzo and El-Hani 2009).

  3. See also Schlater (2006) and Galton (2009).

  4. We consider Mendelism as the simplistic view of inheritance derived from Mendel’s work as the understanding of his work evolved within the corpus of genetics research in the early Twentieth Century. This is the view that traits are determined solely by genetics (determinism—to be discussed below), that inheritance is determined by particles, i.e., “factors” (what we today call genes) that assort independently during reproduction and are tandemly ordered (as “beads on a string”), and that most traits are binary (“normal” vs. “abnormal”) and determined in a simple (“Mendelian”) dominant or recessive pattern (with a few simple exceptions such as sex linkage).

  5. Very early on, Johannsen (1923) recognized the shortcomings of such Mendelism.

  6. Both English translations taken from Falk (1986, p. 140).

  7. Falk (1986) refers to this view as “instrumental reductionism” (p. 141).

  8. The very public argument between Goldschmidt and the genetic materialists, especially Muller, is an interesting part of genetic history. For more on this topic, see Falk 1986.

  9. The stories and support materials are freely available on the Internet at: http://www.storybehindthescience.org. [Accessed June 10, 2013].

  10. The exact location of the pod color gene (green/yellow/GP/gp) is not known but is assumed to be in linkage group V.

References

  • Allchin, D. (2003). Scientific myth-conceptions. Science Education, 87, 329–351.

    Article  Google Scholar 

  • Allchin, D. (2012). Round vs. wrinkled: Mendel, dominance, and the nature of science. Available from the author: allch001@umn.edu.American Association for the Advancement of Science (2013). Topic: Evolution and natural selection. http://assessment.aaas.org/topics/EN#/ Accessed June 10, 2013.

  • Armstead, I., Donnison, I., Aubry, S., Harper, J., Hörtensteiner, S., James, C., et al. (2007). Cross-species identification of Mendel’s I locus. Science, 315, 73.

    Article  Google Scholar 

  • Authors (in preparation). Students need to understand evolution. Or do they?

  • Bateson, W. (1902). The facts of heredity in the light of Mendel’s discovery. Reports to the Evolution Committee of the Royal Society, London, 1, 125–160.

    Google Scholar 

  • Bateson, W. (1909). Mendel’s principles of heredity. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bhattacharyya, M. K., Smith, A. M., Ellis, T. H. N., Hedley, C., & Martin, C. (1990). The wrinkled-see character of Pea describe by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell, 60, 115–122.

    Article  Google Scholar 

  • Bizzo, N. (1999). On the different interpretations of the historical and logical development of the scientific understanding of evolution. In Toward scientific literacy, Proceedings of the IV HPSST conference (pp. 99–112). Faculty of education, University of Calgary, Canada.

  • Bizzo, N., & El-Hani, C. N. (2009). Darwin and Mendel: Evolution and genetics. Journal of Biological Education, 43(3), 108–114.

    Article  Google Scholar 

  • Burian, R. M. (2013). On gene concepts and teaching genetics: Episodes from classical genetics. Science & Education, 22, 325–344.

    Article  Google Scholar 

  • Callender, L. A. (1988). Gregor Mendel: An opponent of descent with modification. History of Science, 26, 41–57.

    Google Scholar 

  • Castéra, J., Clément, P., & Abrougui, M. (2008). Genetic determinism in school textbooks: A comparative study among sixteen countries. Science Education International, 19(2), 163–184.

    Google Scholar 

  • Clough, M. P. (2011). The story behind the science: Bringing science and scientists to life in post-secondary science education. Science & Education, 20(7), 701–717.

    Article  Google Scholar 

  • Clough, M. P., Herman, B. C., & Smith, J. A. R. (2010). Seamlessly teaching science content and the nature of science. Paper presented at the annual meeting of the Association for Science Teacher Education, Sacramento, CA.

  • Corcos, A., & Monaghan, F. (1985). Some myths about Mendel’s experiments. American Biology Teacher, 47(4), 233–236.

    Article  Google Scholar 

  • Correns, C. (1900). G. Mendel’s law concerning the behavior of progeny of varietal hybrids. First published in English as: Correns, C., 1950. G. Mendel’s law concerning the behavior of progeny of varietal hybrids. Genetics, 35(5, pt 2):33–41. Originally published as: Correns, C. 1900. G. Mendels Regel über das Verhalten der Nachkommenschaft der Rassenbastarde. Berichte der Deutschen Botanischen Gesellschaft, 18: 158–168.

  • Di Trocchio, F. (1991). Mendel’s experiments: A reinterpretation. Journal of the History of Biology, 24, 485–519.

    Article  Google Scholar 

  • DiGisi, L. L., & Wilett, J. B. (1995). What high school biology teachers say about their textbook use: A descriptive study. Journal of Research in Science Teaching, 32(2), 123–142.

    Article  Google Scholar 

  • Dougherty, M. J. (2009). Closing the gap: Inverting the genetics curriculum to ensure an informed public. American Journal of Human Genetics, 85, 1–7.

    Article  Google Scholar 

  • Dougherty, M. J., Pleasants, C., Solow, L., Wong, A., & Zhang, H. (2011). A comprehensive analysis of high school genetics standards: Are states keeping pace with modern genetics? CBE-Life Sciences Education, 10, 318–327.

    Article  Google Scholar 

  • Duncan, R. G., & Reiser, B. J. (2007). Reasoning across ontologically distinct levels: Students’ understanding of molecular genetics. Journal of Research in Science Teaching, 44(7), 938–959.

    Article  Google Scholar 

  • Dunn, L. C. (1965). A short history of genetics. New York: McGraw-Hill.

    Google Scholar 

  • Fairbanks, D. J. (2008). Mendelian controversies—An update. In A. Franklin, A. W. F. Edwards, D. J. Fairbanks, D. L. Hartl, & T. Seidenfeld (Eds.), Ending the mendel-fisher controversy (pp. 302–311). Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  • Fairbanks, D. J., & Rytting, B. (2001). Mendelian controversies: A botanical and historical review. American Journal of Botany, 88, 737–752.

    Article  Google Scholar 

  • Falk, R. (1986). What is a gene? Studies in History and Philosophy of Science, 17(2), 133–173.

    Article  Google Scholar 

  • Falk, R., & Sarkar, S. (1991). The real objective of Mendel’s paper: A response to Monaghan and Corcos. Biology and Philosophy, 6, 447–451.

    Article  Google Scholar 

  • Fisher, R. A. (1936/2008). Has Mendel’s work been rediscovered? Annals of Science, 1, 115–137. Reprinted 2008 in A. Franklin, A. W. F. Edwards, D. J. Fairbanks, D. L. Hartl, & T. Seidenfeld (Eds.), Ending the mendel-fisher controversy (pp. 117–140). Pittsburgh: University of Pittsburgh Press.

  • Focke, W. O. (1881). Die pflanzen-mischlinge; ein beitrag zur biologie der gewächse. Berlin: Gebrüder Borntraeger.

    Google Scholar 

  • Fogle, T. (1990). Are genes units of inheritance? Biology and Philosophy, 5(3), 349–371.

    Article  Google Scholar 

  • Franklin, A. (2008). The mendel-fisher controversy. In A. Franklin, A. W. F. Edwards, D. J. Fairbanks, D. L. Hartl, & T. Seidenfeld (Eds.), Ending the mendel-fisher controversy (pp. 1–77). Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  • Galton, D. (2009). Did Darwin read Mendel? QJM, 102(8), 587–589.

    Article  Google Scholar 

  • Gericke, N. M., & Hagberg, M. (2007). Definition of historical models of gene function and their relation to students’ understanding of genetics. Science & Education, 16(7–8), 849–881.

    Article  Google Scholar 

  • Gericke, N. M., & Hagberg, M. (2010a). Conceptual incoherence as a result of the use of multiple historical models in school textbooks. Research in Science Education, 40(4), 605–623.

    Article  Google Scholar 

  • Gericke, N. M., & Hagberg, M. (2010b). Conceptual variation in the depiction of gene function in upper secondary school textbooks. Science & Education, 19(10), 963–994.

    Article  Google Scholar 

  • Gericke, N. M., Hagberg, M., & Jorde, D. (2013). Upper secondary students’ understanding of the use of multiple models in biology textbooks—The importance of conceptual variation and incommensurability. Research in Science Education, 43(2), 755–780.

    Article  Google Scholar 

  • Gericke, N. M., Hagberg, M., Santos, V. C., Joaquim, L. M., & El-Hani, C. N. (2012). Conceptual variation or incoherence? Textbook discourse on genes in six countries. Science & Education,. doi:10.1007/s11191-012-9499-8.

    Google Scholar 

  • Gericke, N., & Smith, M. U. (in press). 21st century genetics and genomics: Contributions of HPS–informed research and pedagogy. In M. Matthews (Ed.), Handbook of historical and philosophical research in science education. New York: Springer.

  • Gericke, N. M., & Wahlberg, S. (2013). Clusters of concepts in molecular genetics: A study of Swedish upper secondary science students’ understanding. Journal of Biological Education, 47(2), 73–83.

    Article  Google Scholar 

  • Glynn, S. M., Duit, R., & Thiele, R. B. (1995). Teaching science with analogies: A strategy for constructing knowledge. In S. M. Glynn & R. Duit (Eds.), Learning science in the schools: Research reforming practice (pp. 247–273). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Goldschmidt, R. B. (1954). Different philosophies of genetics. Science, 119, 703–710.

    Article  Google Scholar 

  • Hartl, D. L., & Fairbanks, D. J. (2007). Mud sticks: On the alleged falsification of Mendel’s data. Genetics, 175, 975–979.

    Google Scholar 

  • Hartl, D. L., & Orel, V. (1992). What did Mendel think he discovered. Genetics, 131, 245–253.

    Google Scholar 

  • Hellens, R. P., Moreau, C., Lin-Wang, K., Schwinn, K. E., Thomson, S. J., Fiers, M. W. E. J., et al. (2010). Identification of Mendel’s white flower character. PLoS One, 5(10), 1–8.

    Article  Google Scholar 

  • Henig, R. M. (2000). The monk in the garden. Boston: Houghton Mifflin.

    Google Scholar 

  • Henson, K., Cooper, M. M., & Klymkowsky, M. W. (2012). Turning randomness into meaning at the molecular level using Muller’s morphs. Biology Open,. doi:10.1242/bio.2012031.

    Google Scholar 

  • Hott, A. M., Huether, C. A., McInerney, J. D., Christianson, C., Fowler, R., Bender, R., et al. (2002). Genetics content in introductory biology courses for non-science majors: Theory and practice. BioScience, 52, 1024–1035.

    Article  Google Scholar 

  • Hull, D. L. (2002). Varieties of reductionism: Derivation and gene selection. In M. H. V. Regenmortel & D. L. Hull (Eds.), Promises and limits of reductionism in the biomedical sciences (pp. 161–173). Chichester: Wiley.

    Chapter  Google Scholar 

  • Jackson, J., Dukerich, L., & Hestenes, D. (2008). Modeling instruction: An effective model for science education. Science Educator, 17(1), 10–17.

    Google Scholar 

  • Johannsen, W. (1909) Elemente der exakten Erblichkeitslehre. Jena, Germany: Gustav Fischer. Full text available at http://caliban.mpiz-koeln.mpg.de/johannsen/elemente/johannsen_elemente_der_exakten_erblichkeitslehre_2.pdf. Accessed May 29, 2013.

  • Johannsen, W. (1923). Some remarks about units in heredity. Hereditas, 4(1-2), 133–141.

    Google Scholar 

  • Johnson, V., Naele, D. C., & Smith, D. (1990). Implementing conceptual change teaching in primary science. The Elementary School Journal, 91(2), 109–131.

    Article  Google Scholar 

  • Johnson, S. K., & Stewart, J. (2002). Revising and assessing explanatory models in a high school genetics class: A comparison of unsuccessful and successful performance. Science Education, 86(4), 463–480.

    Article  Google Scholar 

  • Kampourakis, K. (2011). Mendel and the path to genetics: Portraying science as a social process. Science & Education,. doi:10.1007/s11191-010-9323-2.

    Google Scholar 

  • Kampourakis, K. (2013). Mendel and the path to Genetics: Portraying science as a social process. Science & Education, 22(2), 293–324.

    Article  Google Scholar 

  • Keller, E. F. (2009). Century of the gene. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Lanie, A. D., Jayarante, T. E., Sheldon, J. P., Kardia, S. L. R., Anderson, E. S., Feldbaum, M., et al. (2004). Exploring the public understanding of basic genetic concepts. Journal of Genetic Counseling, 13(4), 305–320.

    Article  Google Scholar 

  • Lewis, J., & Kattmann, U. (2004). Traits, genes, particles and information: Re-visiting students’ understandings of genetics. International Journal of Science Education, 26(2), 195–206.

    Article  Google Scholar 

  • Lewis, J., Leach, J., & Wood-Robinson, C. (2000). All in the genes? Young people’s understanding of the nature of genes. Journal of Biological Education, 34(2), 74–79.

    Article  Google Scholar 

  • Limon, M., & Mason, L. (2002). Reconsidering conceptual change: Issues in theory and practice (pp. 61–76). Dordrecht: Kluwer.

    Book  Google Scholar 

  • Lonsbury, J. G., & Ellis, J. D. (2002). Science history as a means to teach nature of science concepts: Using the development or understanding related to mechanisms of inheritance. Electronic Journal of Science Education, 7(2). Article 0002. Accessed June 10, 2013 from http://wolfweb.unr.edu/homepage/crowther/ejse/ejsev7n2.html.

  • Marbach-Ad, G. (2001). Attempting to break the code in student comprehension of genetic concepts. Journal of Biological Education, 35(4), 183–189.

    Article  Google Scholar 

  • Matthews, M. R. (1994). Science teaching: The role of history and philosophy of science. New York: Routledge.

    Google Scholar 

  • Mayr, E. (1982). The growth of biological thought: Diversity, evolution and inheritance. Cambridge, MA: The Belknap Press of Harvard University Press.

    Google Scholar 

  • Mendel, G. (1866/2008). Versuche über Plflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn, Bd. IV für das Jahr 1865, Abhandlungen, 3–47. Reprinted translation by Royal Horticultural society in 2008 In A. Franklin, A. W. F. Edwards, D. J. Fairbanks, D. L. Hartl, & T. Seidenfeld (Eds.), Ending the mendel-fisher controversy (pp. 78–116). Pittsburgh: University of Pittsburgh Press.

  • Monaghan, F. V., & Corcos, A. (1990). The real objective of Mendel’s paper. Biology and Philosophy, 5, 267–292.

    Article  Google Scholar 

  • Moody, D. E. (2000). The paradox of the textbook. In K. M. Fisher, J. H. Wandersee, & D. E. Moody (Eds.), Mapping biology knowledge (pp. 167–184). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Moore, R. (2001). The “rediscovery” of Mendel’s work. BioScience, 27(2), 13–24.

    Google Scholar 

  • Morgan, T. H. (1933). The relation of genetics to physiology and medicine. In H. Grünewald (Ed.), Nobel lectures. Physiology and medicine 1922–1941 (pp. 313–328). Amsterdam: Elsevier.

    Google Scholar 

  • Moss, L. (2001). Deconstructing the gene and reconstructing molecular developmental systems. In S. Oyama, P. E. Griffiths, & R. D. Gray (Eds.), Cycles of contingency: Developmental systems and evolution (pp. 85–97). Cambridge, MA: MIT Press.

    Google Scholar 

  • Moss, L. (2003). What genes can’t do. Cambridge: MIT Press.

    Google Scholar 

  • Muller, H. J. (1922). Variation due to change in the individual gene. American Naturalist, 56, 32–50.

    Article  Google Scholar 

  • Offner, S. (2011). Mendel’s peas & the nature of the gene: Genes code for proteins & proteins determine phenotype. American Biology Teacher, 72(7), 382–387.

    Article  Google Scholar 

  • Olby, R. (1979). Mendel not Mendelian? History of Science, 17, 53–72.

    Google Scholar 

  • Olby, R. (1985). Origins of Mendelism (2nd ed.). Chicago IL: University of Chicago Press.

    Google Scholar 

  • Olby, R. (2009). Variation and inheritance. In M. Ruse & R. J. Richards (Eds.), Cambridge companion to the “Origin of species” (pp. 30–46). Cambridge: Cambridge University Press.

    Google Scholar 

  • Olby, R., & Gautrey, P. (1968). Eleven references to Mendel before 1900. Annals of Science, 24, 7–20.

    Article  Google Scholar 

  • Orel, V. (1996). Gregor Mendel: The first geneticist. Oxford: University of Oxford Press.

    Google Scholar 

  • Rasmusson, J. (1927). Genetically changed linkage values in Pisum. Hereditas, 10, 1–150.

    Article  Google Scholar 

  • Redfield, R. J. (2012). “Why do we have to learn this stuff?” A new genetics for 21st century students. PLoS Biology, 10(7), e1001356. doi:10.1371/journal.pbio.1001356.

    Article  Google Scholar 

  • Reid, J. B., & Ross, J. J. (2011). Mendel’s genes: Toward a full molecular characterization. Genetics, 189, 3–10.

    Article  Google Scholar 

  • Rubba, P.A. (1977). Nature of scientific knowledge scale. Test and user’s manual. East Lansing, MI: National Center for Research on Teacher Learning. (ERIC Document Reproduction Service No. ED 146 225).

  • Sadler, I. (1983). Pier Louis Moreande Maupertuis, A precursor of Mendel? Journal of the History of Biology, 16, 101–136.

    Google Scholar 

  • Santos, V. C., Joaquim, L. M., & El-Hani, C. N. (2012). Hybrid deterministic views about genes in biology textbooks: A key problem in genetics teaching. Science & Education, 21(4), 543–578.

    Article  Google Scholar 

  • Sarkar, S. (2002). Genes versus molecules: How to, and how not to, be a reductionist. In M. H. V. Regenmortel & D. L. Hull (Eds.), Promises and limits of reductionism in the biomedical sciences (pp. 191–209). Chichester: Wiley.

    Chapter  Google Scholar 

  • Sato, Y., Morita, R., Nishimura, M., Yamaguchi, H., & Kusaba, M. (2007). Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proceedings of the National Academy of Science, 104, 14169–14174.

    Article  Google Scholar 

  • Schlater, A. (2006). The extent of Charles Darwin’s knowledge of Mendel. Journal of Biosciences, 31, 191–193.

    Article  Google Scholar 

  • Shaw, K. E., Horne, K. V., Zhang, H., & Boughman, J. (2008). Essay contest reveals misconceptions of high school students in genetics content. Genetics, 178, 1157–1168.

    Article  Google Scholar 

  • Sjøberg, S. (1998). Naturfag som allmenndannelse: En kritisk fagdidaktikk. Oslo: Gyldendal.

    Google Scholar 

  • Smith, M. U. (1988). Successful and unsuccessful problem solving in classical genetic pedigrees. Journal of Research in Science Teaching, 25, 411–433.

    Article  Google Scholar 

  • Smith, M. U., & Adkison, L. R. (2010). Updating the model definition of the gene in the modern genomic era with implications for instruction. Science & Education, 19(1), 1–20.

    Article  Google Scholar 

  • Smith, M. U., & Good, R. (1984). Problem solving and classical genetics: Successful vs. unsuccessful performance. Journal of Research in Science Teaching, 21, 895–912.

    Article  Google Scholar 

  • Smith, A. L., & Williams, M. J. (2007). “It’s the X and Y thing”: Cross-sectional and longitudinal changes in children’s understanding of genes. Research in Science Education, 37(4), 407–422.

    Article  Google Scholar 

  • Venville, G., & Treagust, D. F. (1998). Exploring conceptual change in genetics using a multidimensional interpretive framework. Journal of Research in Science Teaching, 35(9), 1031–1055.

    Article  Google Scholar 

  • von Tschermak, E. (1900). Concerning artificial crossing in Pisum sativum. First published in English as: Tschermak, E. 1950. Concerning artificial crossing in Pisum sativum. Genetics, 35(5, pt 2): 42–47. Originally published as: Tschermak, E. (1900). Über Künstliche Kreuzung bei Pisum sativum. Berichte der Deutsche Botanischen Gesellschaft, 18, 232–239.

  • Vorzimmer, P. (1968). Darwin & Mendel: The historical connection. Isis, 59(1), 77–82.

    Article  Google Scholar 

  • Watson, J. D., & Crick, F. H. C. (1953). A structure for deoxyribose nucleic acid. Nature, 171(4356), 737–738.

    Article  Google Scholar 

  • Weismann, A. (1889). Essays upon heredity and kindred biological problems. Oxford: Clarendon Press.

    Google Scholar 

  • Westerlund, J., & Fairbanks, D. J. (2004). Gregor Mendel and “myth-conceptions”. Science Education, 88, 754–758.

    Article  Google Scholar 

  • Westerlund, J. F., & Fairbanks, D. J. (2010). Gregor Mendel’s classic paper and the nature of science in genetics courses. Hereditas, 147, 293–303.

    Article  Google Scholar 

  • Zirkle, C. (1964). Some oddities in the delayed discovery of Mendelism. Journal of Heredity, 55, 65–72.

    Google Scholar 

  • Zwart, H. (2008). Understanding the human genome project: A biographical approach. New Genetics & Society, 27(4), 353–376.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike U. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, M.U., Gericke, N.M. Mendel in the Modern Classroom. Sci & Educ 24, 151–172 (2015). https://doi.org/10.1007/s11191-013-9629-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-013-9629-y

Keywords

Navigation