Skip to main content

Advertisement

Log in

Towards Bildung-Oriented Chemistry Education

Science & Education Aims and scope Submit manuscript

Abstract

This paper concerns Bildung-oriented chemistry education, based on a reflective and critical discourse of chemistry. It is contrasted with the dominant type of chemistry education, based on the mainstream discourse of chemistry. Bildung-oriented chemistry education includes not only content knowledge in chemistry, but also knowledge about chemistry, both about the nature of chemistry and about its role in society. In 2004 Mahaffy suggested a tetrahedron model based on Johnstone’s chemical triangle. The latter represents the formal aspects of chemistry teaching (macro, submicro, and symbolic) and the top of the tetrahedron represents a human element. In the present paper the following subdivision of the top is suggested (starting from the bottom): (1) applied chemistry, (2) socio-cultural context, and (3) critical-philosophic approach. The professional identity of the Bildung-oriented chemistry teacher differs from that of the chemist and is informed by research fields such as Philosophy of Chemistry, Science and Technology Studies, and Environmental Education. He/she takes a socio-critical approach to chemistry, emphasising both the benefits and risks of chemistry and its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Aikenhead, G. (2003). Chemistry and physics instruction: Integration, ideologies, and choices. Chemistry Education: Research and Practice, 4(2), 115–130.

    Article  Google Scholar 

  • Aikenhead, G. (2006). Science education for everyday life: Evidence-based practice. New York: Teachers College Press.

    Google Scholar 

  • Aksela, M. (2010). Evidence-based teacher education: Becoming a lifelong research-oriented chemistry teacher. Chemistry Education: Research and Practice, 11, 84–91.

    Article  Google Scholar 

  • Atkins, P., & Jones, L. (2008). Chemical principles: The quest for insight (4th ed.). New York: W. H. Freeman and Company.

    Google Scholar 

  • Barke, H.-D., Hazari, A., & Yitbarek, S. (2009). Misconceptions in chemistry: Addressing perceptions in chemical education. Berlin: Springer.

    Google Scholar 

  • Bauer, W. (2003). On the relevance of Bildung for democracy. Educational Philosophy and Theory, 35(2), 212–225.

    Google Scholar 

  • Baumann, Z. (1991). Modernity and ambivalence. Cambridge: Polity Press.

    Google Scholar 

  • Beck, U. (1992). Risk Society: Towards a new modernity. London: Sage.

    Google Scholar 

  • Böschen, S., Lenoir, D., & Scheringer, M. (2003). Sustainable chemistry: Starting points and prospects. Naturwissenschaften, 90, 93–102.

    Google Scholar 

  • Brandt, W. W. (2003). Chemistry Beyond Positivism. In J. E. Early (Ed.), Chemical explanation: Characteristics, development, autonomy (pp. 335–344) (Annals of the New York Academy of Sciences, vol. 988).

  • Broman, K., Ekborg, M., & Johnels, D. (2011). Chemistry in crisis? Perspectives on teaching and learning chemistry in Swedish upper secondary schools. NorDiNa: Nordic Studies in Science Education, 7(1), 43–53.

    Google Scholar 

  • Bryce, T. G. K. (2010). Sardonic science? The resistance to more humanistic forms of education. Cultural Studies of Science Education, 5, 591–612.

    Article  Google Scholar 

  • Bulte, A., Westbroek, H., Klaassen, K., & Pilot, A. (2002). Developmental research: Healthy and poisonous effects of substances. In B. Ralle & I. Eilks (Eds.), Research in chemical education: What does this mean?. Aachen: Shaker Verlag.

    Google Scholar 

  • Casper, M. J. (Ed.). (2003). Synthetic planet: Chemical politics and the hazards of modern life. New York: Routledge.

    Google Scholar 

  • Christensen, C. (2009). Risk and school science education. Studies in Science Education, 45(2), 205–223.

    Article  Google Scholar 

  • Cross, R. T., & Price, R. F. (1992). Teaching science for social responsibility. Sydney: St. Louis Press.

    Google Scholar 

  • Cullen, W. R. (2008). Is arsenic an aphrodisiac? The sociochemistry of an element. Cambridge: RSC Publishing.

    Google Scholar 

  • De Vos, W., Bulte, A., & Pilot, A. (2002). Chemistry curricula for general education: Analysis and elements of a design. In J. K. Gilbert, et al. (Eds.), Chemical education: Towards research-based practice. Dordrecht: Kluwer.

    Google Scholar 

  • Do, C. H., & Jin, J.-I. (2004). Public’s perception of chemistry. Page 90 in the Abstract book of the 18th International Conference on Chemical Education—Chemistry Education for the Modern World, held in Turkey August 2004.

  • Dupré, J. (2001). Human nature and the limits of science. Oxford: Oxford University Press.

  • Early, J. E. (2004). Would introductory chemistry courses work better with a new philosophical basis? Foundations of Chemistry, 6, 137–160.

    Article  Google Scholar 

  • Ekberg, M. (2007). The parameters of the risk society: A review and exploration. Current Sociology, 55(3), 343–366.

    Article  Google Scholar 

  • Elam, M., & Bertilsson, M. (2003). Consuming, engaging and confronting science: The emerging dimensions of scientific citizenship. European Journal of Social Theory, 6(2), 233–251.

    Article  Google Scholar 

  • Elmose, S., & Roth, W.-M. (2005). Allgemeinbildung: Readiness for living in risk society. Journal of Curriculum Studies, 37(1), 11–34.

    Article  Google Scholar 

  • Englund, T. (2000). Rethinking democracy and education: Towards an education of deliberative citizens. Journal of Curriculum Studies, 32(2), 305–313.

    Article  Google Scholar 

  • Erduran, S., Bravo, A. A., & Naaman, R. M. (2007). Developing epistemologically empowered teachers: Examining the role of philosophy of chemistry in teacher education. Science & Education, 16, 975–989.

    Article  Google Scholar 

  • Eriksson, I., Ståhle, Y., & Lindberg, V. (2011). Formelskrivning eller vardagsförståelse: Skilda betoningar i finlandssvenska och svenska kemiklassrum. In I. Eriksson (Ed.), Kemiundervisning, text och textbruk i finlandssvenska och svenska skolor—en komparativ tvärvetenskaplig studie. Stockholm: Stockholms Universitets Förlag (in Swedish).

    Google Scholar 

  • Gilbert, J. (2006). On the nature of “context” in chemical education. International Journal of Science Education, 28(9), 957–976.

    Article  Google Scholar 

  • Gilbert, J., & Treagust, D. (2009a). Towards a coherent model for macro, submicro and symbolic representations in chemical education. Chapter 14 in Gilbert & Treagust (2009c).

  • Gilbert, J., & Treagust, D. (2009b). Macro, submicro and symbolic representations and the relationship between them: Key models in chemical education. Introduction in Gilbert & Treagust (2009c).

  • Gilbert, J., & Treagust, D. (Eds.). (2009c). Multiple representations in chemical education. Berlin: Springer.

    Google Scholar 

  • Good, R., & Shymansky, J. (2001). Nature-of-science literacy in benchmarks and standards: Post-modern/relativist or modern/realist? Science & Education, 10, 173–185.

    Article  Google Scholar 

  • Gräber, W. (2002). Chemistry education’s contribution to scientific literacy: An example. In B. Ralle & I. Eilks (Eds.), Research in chemical education: What does this mean?. Aachen: Shaker.

    Google Scholar 

  • Hodson, D. (2003). Time for action: Science education for an alternative future. International Journal of Science Education, 25(6), 645–670.

    Article  Google Scholar 

  • Hofstein, A., Eilks, I., & Bybee, R. (2011). Societal issues and their importance for contemporary science education: A pedagogical justification and the state-of-the-art in Israel, Germany, and the USA. International Journal of Science and Mathematics Education, published on-line 11 January 2011.

  • Holbrook, J., & Rannikmae, M. (2007). The nature of science education for enhancing scientific literacy. International Journal of Science Education, 29(11), 1347–1362.

    Article  Google Scholar 

  • Holbrook, J., & Rannikmae, M. (2009). The meaning of scientific literacy. International Journal of Environmental and Science Education, 4(3), 275–288.

    Google Scholar 

  • Jakobsson, G. (2003). Vardagskemi [Everyday-life chemistry], Lund: Studentlitteratur (in Swedish).

  • Jamison, A. (2001). Science, technology and the quest for sustainable development. Technology Analysis and Strategic Management, 13(1), 9–22.

    Article  Google Scholar 

  • Jensen, B. B., & Schnack, K. (2006). The action competence approach in environmental education. Environmental Education Research, 12(3–4), 471–486.

    Article  Google Scholar 

  • Johnstone, A. (1982). Macro- and micro-chemistry. School Science Review, 64, 377–379.

    Google Scholar 

  • Jong, O. D., & Taber, K. S. (2007). Teaching and learning the many faces of chemistry. In S. Abell & N. Lederman (Eds.), Handbook of research on science education. London: LEA.

    Google Scholar 

  • Klafki, W. (2005). Dannelsesteori og didaktik: Nye studier. 2nd Ed., Århus: Klim (in Danish). Title of the German original: “Neue Studien zur Bildungstheorie und Didaktik” (1996).

  • Koker, M. (2007). The science education for public understanding program (SEPUP): A short history of issue-oriented science. Accessed on the Web 6 September 2011.

  • Kolstø, S. D. (2006). Patterns in students’ argumentation confronted with a risk-focused socio-scientific issue. International Journal of Science Education, 28(14), 1689–1716.

    Article  Google Scholar 

  • Kouns, M. (2010). Inga IG i Kemi A! En språkdidaktisk studie av en kemilärares undervisningsstrategier i en gymnasieklass med elever med svenska som andraspråk. Licentiate Thesis, Malmö University (in Swedish).

  • Krageskov Eriksen, K. (2002). The future of tertiary chemical education: A bildung focus. HYLE: International Journal for Philosophy of Chemistry, 8, 35–48.

    Google Scholar 

  • Laugksch, R. (2000). Scientific literacy: A conceptual overview. Science Education, 84, 71–94.

    Article  Google Scholar 

  • Løvlie, L., & Standish, P. (2002). Introduction: Bildung and the idea of a liberal education. Journal of Philosophy of Education, 36(3), 317–340.

    Article  Google Scholar 

  • Mahaffy, P. (2004). The future shape of chemistry education. Chemistry Education: Research and Practice, 5(3), 229–245.

    Article  Google Scholar 

  • Marks, R., Bertram, S., & Eilks, I. (2008). Learning chemistry and beyond with a lesson plan on potato crisps, which follows a socio-critical and problem-oriented approach to chemistry lessons: A case study. Chemistry Education: Research and Practice, 9, 267–276.

    Article  Google Scholar 

  • Marks, R., & Eilks, I. (2009). Promoting scientific literacy using a sociocritical and problem-oriented approach to chemistry teaching: Concepts, examples, experiences. International Journal of Environmental and Science Education, 4(3), 231–245.

    Google Scholar 

  • Marks, R., & Eilks, I. (2010). Research-based development of a lesson plan on shower gels and musk fragrances following a socio-critical and problem-oriented approach to chemistry teaching. Chemistry Education: Research and Practice, 11, 129–141.

    Article  Google Scholar 

  • McGregor, S. (1999). Towards a rationale for integrating consumer and citizenship education. Journal of Consumer Studies & Home Economics, 23, 207–211.

    Article  Google Scholar 

  • Meijer, M. R., Bulte, A. M. W., & Pilot, A. (2009). Structure-property relations between macro and micro representations: Relevant meso-levels in authentic tasks. Chapter 9 in Gilbert & Treagust (2009c).

  • Mogensen, F., & Schnack, K. (2010). The action competence approach and the ‘new’ discourses of education for sustainable development, competence and quality criteria. Environmental Education Research, 16(1), 59–74.

    Article  Google Scholar 

  • Norris, S. P. (1997). Intellectual independence for non-scientists and other content-transcendent goals. Science Education, 81, 239–258.

    Article  Google Scholar 

  • Norris, S. P., & Philips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87, 224–240.

    Article  Google Scholar 

  • Östman, L. (1996). Discourses, discursive meanings and socialization in chemistry education. Journal of Curriculum Studies, 28(1), 37–55.

    Article  Google Scholar 

  • Paulsen, A. C. (2006). Naturfag i skolen i et kritisk demokratisk dannelsesperspektiv [Science subjects in school in a critical-democratic Bildung-perspective]. NorDiNa: Nordic Studies in Science Education, 2(4), 69–84 (in Danish).

    Google Scholar 

  • Pedretti, E., Bencze, L., Hewitt, J., Romkey, L., & Jivraj, A. (2008). Promoting issues-based STSE perspectives in science teacher education: Problems of identity and ideology. Science & Education, 17, 941–960.

    Article  Google Scholar 

  • Roberts, D. A. (1998). Analyzing school science courses: The concept of companion meaning. In D. A. Roberts & L. Östman (Eds.), Problems of meaning in science curriculum. New York: Teachers College Columbia University.

    Google Scholar 

  • Roberts, D. A. (2007). Scientific literacy/science literacy. In S. Abell & N. Lederman (Eds.), Handbook of research on science education. London: LEA.

    Google Scholar 

  • Roth, W.-M., McGinn, M. K., & Bowen, G. M. (1996). Applications of science and technology studies: Effecting change in science education. Science, Technology & Human Values, 21(4), 454–484.

    Article  Google Scholar 

  • Schnack, K. (2008). Participation, education, and democracy: Implications for environmental education, health education, and education for sustainable development. In A. Reid, B. Bruun Jensen, J. Nikel, & V. Simovska (Eds.), Participation and learning: Perspectives on education and the environment, health and sustainability (pp. 181–196). Berlin: Springer.

    Google Scholar 

  • Schummer, J. (1997). Chemistry managers coping with environmentalists’ criticism. HYLE: International Journal for Philosophy of Chemistry, 3, 109–110.

    Google Scholar 

  • Schummer, J. (1999). Coping with the growth of chemical knowledge: Challenges for chemistry documentation, education, and working chemists. Educacion Quimica, 10, 92–101.

    Google Scholar 

  • Shwartz, Y., Ben-Zvi, R., & Hofstein, A. (2005). The importance of involving high-school chemistry teachers in the process of defining the operational meaning of ‘chemical literacy’. International Journal of Science Education, 27(3), 323–344.

    Article  Google Scholar 

  • Sjöström, J. (2006). Beyond classical chemistry: Subfields and metafields of the molecular sciences. Chemistry International, 28(September–October), 9–15.

    Google Scholar 

  • Sjöström, J. (2007). The discourse of chemistry (and beyond). HYLE: International Journal for Philosophy of Chemistry, 13(2), 83–97.

    Google Scholar 

  • Skovsmose, O. (2001). Landscapes of investigation. Zentralblatt für Didaktik der Mathematik (ZDM), 33(4), 123–132.

    Article  Google Scholar 

  • Stafford, S. P. (2006). Data, information, knowledge, and wisdom. In Knowledge management, organizational intelligence and learning, and complexity, from Encyclopedia of Life Support Systems (EOLSS). www.eolss.net. Accessed 22 February 2006.

  • Stenmark, M. (2001). Scientism: Science, ethics and religion. Ashgate: Aldershot.

    Google Scholar 

  • Talanquer, V. (2011). Macro, submicro, and symbolic: The many faces of the chemistry ‘triplet’. International Journal of Science Education, 33(2), 179–195.

    Article  Google Scholar 

  • Tsaparlis, G. (2009). Learning at the macro level: The role of practical work. Chapter 5 in Gilbert & Treagust (2009c).

  • Turner, S. (2008). School science and its controversies; or, whatever happened to scientific literacy? Public Understanding of Science, 17, 55–72.

    Article  Google Scholar 

  • Van Aalsvoort, J. (2004). Logical positivism as a tool to analyse the problem of chemistry’s lack of relevance in secondary school chemical education. International Journal of Science Education, 26(9), 1151–1168.

    Article  Google Scholar 

  • Van Berkel, B., Pilot, A., & Bulte, A. (2009). Micro-macro thinking in chemical education: Why and how to escape. Chapter 2 in Gilbert & Treagust (2009c).

  • Vásquez-Levy, D. (2002). Bildung-centred Didaktik: A framework for examining the educational potential of subject matter. Journal of Curriculum Studies, 34(1), 117–128.

    Article  Google Scholar 

  • Vesterinen, V.-M., Aksela, M., & Sundberg, M. (2009). Nature of chemistry in the national frame curricula for upper secondary education in Finland, Norway and Sweden. NorDiNa: Nordic Studies in Science Education, 5(2), 200–212.

    Google Scholar 

  • Wallace, R. G. (2003). Rethinking the education of chemists: The odyssey is over, time for action. Chemistry Education: Research and Practice, 4, 83–96.

    Article  Google Scholar 

  • Ware, S. (2001). Teaching chemistry from a societal perspective. Pure and Applied Chemistry, 73(7), 1209–1214.

    Article  Google Scholar 

  • Whitesides, G. M. (2004). Assumptions: Taking chemistry in new directions. Angewandte Chemie International Edition, 43, 3632–3641.

    Article  Google Scholar 

  • Wimmer, M. (2003). Ruins of Bildung in a knowledge society: Commenting on the debate about future of Bildung. Educational Philosophy and Theory, 35(2), 167–187.

    Article  Google Scholar 

  • Ziman, J. (2001). Getting scientists to think about what they are doing. Science and Engineering Ethics, 7, 165–176.

    Article  Google Scholar 

  • Zoller, U. (2004). Chemistry and environmental education. Chemistry Education: Research and Practice, 5, 95–97.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper Sjöström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sjöström, J. Towards Bildung-Oriented Chemistry Education. Sci & Educ 22, 1873–1890 (2013). https://doi.org/10.1007/s11191-011-9401-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-011-9401-0

Keywords

Navigation