Skip to main content
Log in

The Influence of Interstitial Carbon and Oxygen on Grain Boundary Diffusion in Nickel and Silver

  • Published:
Russian Physics Journal Aims and scope

The paper investigates the influence of interstitial carbon and oxygen atoms on their diffusion along the <111>, <100> and <110> tilt grain boundaries in face-centered cubic nickel and silver. It is shown that in most cases, the impurity addition leads to the growth in the self-diffusion coefficient along the grain boundaries due to the crystal lattice distortion near the impurity atoms, thereby causing the additional lattice distortion and free volume along the grain boundaries. And the lower the initial free volume on the grain boundary, the stronger is the effect from impurities on the grain boundary diffusion. In this regard, the highest and lowest effects from the impurities are observed for the <110> and <100> tilt grain boundaries, respectively. It is found that the influence of interstitial carbon on the grain boundary diffusion is stronger than that of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. G. A. Veiga, H. Goldenstein, M. Perez, and C. S. Becquart, Scripta Mater., 108, 19–22 (2015).

    Article  Google Scholar 

  2. L. E. Kar'kina, I. N. Kar'kin, I. L. Yakovleva, and T. A. Zubkova, Phys. Met. Metallogr., 114, No. 2 172–178 (2013).

    Google Scholar 

  3. A. Atrens, Scripta Metall., 8, 401–412 (1974).

    Article  Google Scholar 

  4. V. Sursaeva and P. Zieba, Defect Diffus. Forum, 237–240, 578–583 (2005).

    Article  Google Scholar 

  5. G. M. Poletaev, M. D. Starostenkov, I. V. Zorya, et al., Russ. Phys. J., 61, No. 7, 1236–1240 (2018).

    Article  Google Scholar 

  6. T. Iwasaki, N. Sasaki, A. Yasukawa, and N. Chiba, Trans. Jpn. Soc. Mech. Eng. A, 40, 15–22 (1997).

    Google Scholar 

  7. H. J. Goldschmidt, Interstitial Alloys, Butterworths, London (1967).

    Book  Google Scholar 

  8. L. Pauling, The Nature of the Chemical Bond, Third Edition, Cornell University Press, Ithaca (1960).

    MATH  Google Scholar 

  9. F. Cleri and V. Rosato, Phys. Rev. B, 48, No. 1, 22–33 (1993).

    Article  ADS  Google Scholar 

  10. G. M. Poletaev, I. V. Zorya, R. Y. Rakitin, and M. A. Iliina, Mater. Phys. Mech., 42, No. 4, 380–388 (2019).

    Google Scholar 

  11. G. M. Poletaev, I. V. Zorya, D. V. Novoselova, and M. D. Starostenkov, Int. J. Mater. Res., 108, No. 10, 785–790 (2017).

    Article  Google Scholar 

  12. G. M. Poletaev and M. D. Starostenkov, Tech. Phys. Lett., 29, No. 6, 454–455 (2003).

    Article  ADS  Google Scholar 

  13. G. M. Poletaev and I. V. Zorya, Tech. Phys. Let., 46, No. 6, 575–578 (2020).

    Article  Google Scholar 

  14. M. Ruda, D. Farkas, and G. Garcia, Comput. Mater. Sci., 45, 550–560 (2009).

    Article  Google Scholar 

  15. P. Vashishta, R. K. Kalia, A. Nakano, and J. P. Rino, J. Appl. Phys., 103, 083504 (2008).

    Article  ADS  Google Scholar 

  16. M. A. San Miguel and J. F. Sanz, Phys. Rev. B, 58, 2369–2371 (1998).

    Article  ADS  Google Scholar 

  17. A. Ovid'ko and A.G. Sheinerman, Rev. Adv. Mater. Sci., 6, No. 1, 41–47 (2004).

    Google Scholar 

  18. Y. Zhou, U. Erb, K. T. Aust, and G. Palumbo, Scripta Mater., 48, 825–830 (2003).

    Article  Google Scholar 

  19. D. Prokoshkina, V. A. Esin, G. Wilde, and S. V. Divinski, Acta Mater., 61, 5188–5197 (2013).

    Article  ADS  Google Scholar 

  20. G. M. Poletaev, I. V. Zorya, M. D. Starostenkov, et al., J. Exp. Theor. Phys., 128, No. 1, 88–93 (2019).

    Article  ADS  Google Scholar 

  21. M. A. Shtremel’, Strength of Alloys. Part 1. Lattice Defects [in Russian]. Metallurgiya, Moscow (1982).

  22. V. B. Vykhodets, T. E. Kurennykh, A. S. Lakhtin, and A. Ya. Fishman, Solid State Phenom., 138, 119–132 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Poletaev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 145–151, December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poletaev, G.M., Zorya, I.V., Rakitin, R.Y. et al. The Influence of Interstitial Carbon and Oxygen on Grain Boundary Diffusion in Nickel and Silver. Russ Phys J 63, 2212–2218 (2021). https://doi.org/10.1007/s11182-021-02290-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02290-w

Keywords

Navigation