Skip to main content
Log in

Zigzag-Shaped Superlattices on the Basis of Graphene Nanoribbons: Structure and Electronic Properties

  • Published:
Russian Physics Journal Aims and scope

The paper focuses on superlattices consisting of two coplanar fragments of one-layer graphene nanoribbons that have different width and are connected at an angle. Classification of such superlattices was carried out; their electronic properties were studied using the tight-binding method. It was demonstrated that in superlattices consisting of two fragments of graphene nanoribbons with armchair edges connected at an angle of 60°, the band gap can be regulated by the number of dimeric carbon atom chains of one of the fragments. In that case one can observe a periodic dependence of the band gap on the number of chains with a characteristic period equal to three dimeric chains. The number of dimeric chains of the second superlattice fragment regulates the average band gap value near which the periodic oscillations occur, as well as the amplitude of those oscillations. Therefore, one can accomplish a sufficiently precise band gap tuning for such structures. Such tuning can find its wide application in the booming carbon nanoelectronics industry when creating generators, amplifiers and sensors in the nanochains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Geim and K. S. Novoselov, Nat. Mater, 6, 183 (2007).

    Article  ADS  Google Scholar 

  2. A. H. Castro Neto, N. M. R. Peres, F. Guinea, et al., Rev. Mod. Phys, 81, 109 (2009).

    Article  ADS  Google Scholar 

  3. L. A. Chernozatonskii, P. B. Sorokin, A. A. Artukh, Russian Chemical Reviews, 83, Issue 3, 251–279 (2014).

  4. J. Liang, Y. Chen, Y. Xu, et al., ACS Appl. Mater. Interfaces, 2, 3310 (2010).

    Article  Google Scholar 

  5. L. Tapasztó, G. Dobrik, P. Lambin, and L. P. Biró, Nat. Nanotechnol., 3, 397 (2008).

    Article  Google Scholar 

  6. Z. Wei, D. Wang, S. Kim, et al., Science, 328, 1373 (2010).

    Article  ADS  Google Scholar 

  7. A. Maffucci and G. Miano, IEEE Trans. Nanotechnol., 12, 817 (2013).

    Article  ADS  Google Scholar 

  8. A. Maffucci and G. Miano, Appl. Sci., 4, 305 (2014).

    Article  Google Scholar 

  9. J. Christensen, A. Manjavacas, S. Thongrattanasiri, et al., ACS Nano, 6, 431 (2012).

    Article  Google Scholar 

  10. R. R. Hartmann, N. J. Robinson, and M. E, Portnoi, Phys. Rev. B., 81, 245431 (2010).

  11. X. Zhu, W. Yan, N. A. Mortensen, and S. Xiao, Opt. Express, 21, 3486 (2013).

    Article  ADS  Google Scholar 

  12. P. B. Bennett, Z. Pedramrazi, A. Madani, et al., Appl. Phys. Lett., 103, 253114 (2013).

    Article  ADS  Google Scholar 

  13. W. S. Hwang, P. Zhao, K. Tahy, et al., APL Mater., 3, 011101 (2015).

    Article  ADS  Google Scholar 

  14. J. G. Son, M. Son, K.-J. Moon, et al., Adv. Mater., 25, 4723 (2013).

    Article  Google Scholar 

  15. S. Blankenburg, J. Cai, P. Ruffieux, et al., ACS Nano, 6, 2020 (2012).

    Article  Google Scholar 

  16. J. Cai, C. A. Pignedoli, L. Talirz, et al., Nat. Nanotechnol., 9, 896 (2014).

    Article  ADS  Google Scholar 

  17. H. Sevincli, M. Topsakal, and S. Ciraci, Phys. Rev. B., 78, 245402 (2008).

    Article  ADS  Google Scholar 

  18. M. Topsakal, H. Sevincli, and S. Ciraci, Appl. Phys. Lett., 92, 173118 (2008).

    Article  ADS  Google Scholar 

  19. X. Wu and X. C. Zeng, Nano Res., 1, 40 (2008).

    Article  Google Scholar 

  20. E. Costa Girão, L. Liang, E. Cruz-Silva, et al., Phys. Rev. Lett., 107, 135501 (2011).

    Article  ADS  Google Scholar 

  21. J. Cai, P. Ruffieux, R. Jaafar, et al., Nature, 466, 470 (2010).

    Article  ADS  Google Scholar 

  22. V. A. Saroka, K. G. Batrakov, L. A. Chernozatonskii, J. Phys. of the Solid State, 56, Issue 10, 2135–2145 (2014).

  23. V. A. Saroka, K. G. Batrakov, V. A. Demin, and L. A. Chernozatonskii, J. Phys. Cond. Matter, 27, 145305 (2015).

    Article  ADS  Google Scholar 

  24. C. T. White, J. Li, D. Gunlycke, and J. W. Mintmire, Nano Lett., 7, 825 (2007).

    Article  ADS  Google Scholar 

  25. M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn., 65, 1920 (1996).

    Article  ADS  Google Scholar 

  26. K. Nakada, M. Fujita, G. Dresselhaus, and M. Dresselhaus, Phys. Rev. B., 54, 17954 (1996).

    Article  ADS  Google Scholar 

  27. Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett., 97, 216803 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Saroka.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 27–32, May 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saroka, V.A., Batrakov, K.G. Zigzag-Shaped Superlattices on the Basis of Graphene Nanoribbons: Structure and Electronic Properties. Russ Phys J 59, 633–639 (2016). https://doi.org/10.1007/s11182-016-0816-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-016-0816-6

Keywords

Navigation