Skip to main content
Log in

Solutions of the Gross–Pitaevskii Equation in Prolate Spheroidal Coordinates

  • Published:
Russian Physics Journal Aims and scope

With the help of the method of similarity transformations, an approach is considered that makes it possible to find particular solutions of the Gross–Pitaevskii equation with a nonstationary coefficient of nonlinearity in prolate spheroidal coordinates. Two exact solutions are found in explicit form, having soliton properties, along with the corresponding potentials. The form of the solutions is illustrated by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, Second Edition, Cambridge University Press, Cambridge (2008).

    Book  Google Scholar 

  2. Yu. S. Kivshar and B. Luther-Davies, Phys. Rep., 298, 81–197 (1998).

    Article  ADS  Google Scholar 

  3. L. V. Yakushevich, Nonlinear Physics of DNA, Second Edition, John Wiley & Sons, Chichester (2004).

    Book  Google Scholar 

  4. A. C. Scott, Nonlinear Science: Emergence and Dynamics of Coherent Structures, Second Edition, Oxford University Press, Oxford (2003).

    Google Scholar 

  5. L. P. Pitaevskii, Usp. Fiz. Nauk, 168, 641–653 (1998).

    Article  Google Scholar 

  6. Y. Zhenya and V. V. Konotop, Phys. Rev., E80, 036607 (2009).

    ADS  Google Scholar 

  7. V. M. Peres-Garcia, P. J. Torres, and V. V. Konotop, Physica, D221, 31–36 (2006).

    ADS  Google Scholar 

  8. J. Bolmonte-Beitia, V. M. Perez-Garcia, V. Vekslerchik, and V. V. Konotop, Phys. Rev. Lett., 100, 164102 (2008).

    Article  ADS  Google Scholar 

  9. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: Method of the Inverse Problem [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  10. D. J. Kaup and A. C. Newell, Proc. Roy. Soc., A361, 413–446 (1978).

    Article  ADS  Google Scholar 

  11. V. I. Karpman, Physica Scripta, 20, No. 3–4, 462–475 (1979).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. R. J. Dodd, M. Edwards, C. J. Williams, et al., Phys. Rev., A54, 661–664 (1996).

    Article  ADS  Google Scholar 

  13. B. B. Baizakov, B. A. Malomed, and M. Salerno, Phys. Rev., E74, 066615 (2006).

    ADS  MathSciNet  Google Scholar 

  14. L. A. Toikka, J. Hietarinta, and K-A. Suominen, J. Phys., A45, No. 48, 485203 (2012); arXiv:1204.3009v2 [cond-mat,quant-gas].

    MathSciNet  Google Scholar 

  15. G. Bluman and J. Cole, Similarity Methods for Differential Equations. Ser.: App. Math. Sci., Vol. 13, Springer Verlag, New York (1974).

  16. A. S. Al-Johani, J. Appl. Math. Phys., 2, 22–32 (2014).

    Article  Google Scholar 

  17. N. N. Lebedev, Special Functions and Their Applications [in Russian], GIFML, Moscow (1963).

    Google Scholar 

  18. J. Hietarinta and V. Druma, J. Nonlin. Math. Phys., 9, Suppl. 1, 67–74 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Borisov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 47–53, September, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, A.V., Shapovalov, A.V. Solutions of the Gross–Pitaevskii Equation in Prolate Spheroidal Coordinates. Russ Phys J 57, 1201–1209 (2015). https://doi.org/10.1007/s11182-015-0364-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-015-0364-5

Keywords

Navigation