Skip to main content

Advertisement

Log in

Spectroscopic (FT-IR, FT-Raman, UV–Vis), quantum chemical calculation and molecular docking evaluation of liquiritigenin: an influenza A (H1N1) neuraminidase inhibitor

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The vibrational spectroscopic analysis of anti-influenza agent liquiritigenin (LGN) was performed using Fourier-transform infrared (FT-IR) and Fourier-transform Raman (FT-Raman) spectra. The experimental values of the LGN molecule was compared with vibrational frequencies obtained from the quantum chemical calculations using density functional theory (DFT) method employing 6-31G, 6-31G(d,p) and 6-311G(d,p) basis sets with scaled frequency, and these values are in good agreement with the computational one. The time-dependent density functional theory method was employed to compute the HOMO–LUMO energy gap of the LGN molecule and their differences were compared with transitions of UV-absorption spectra. The reactivity and selectivity of LGN were analyzed using parameters such as molecular electrostatic potential, global reactivity descriptors, Fukui functions and natural bond orbitals. The molecular orbital contributions were considered using the total, partial and overlap population density of states. The suitability of a drug candidate for human intake can be evaluated by absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. The drug likeness and toxicity properties of LGN were confirmed with Lipinski’s rule of five and ADMET properties, respectively. The LGN molecule exhibits good bioactive score and less toxicity. A molecular docking analysis of LGN was carried out with influenza neuraminidase enzyme, and these results show that LGN has lowest binding affinity with inhibition constant when present in the active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jin Woo Park and Won Ho Jo, Eur. J. Med. Chem. 45, 536 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. J.R. Schnell, J.J. Chou, Nature 451, 591 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J. Lou, X. Yang, Z. Rao, W. Qi, J. Li, H. Wang, Y. Li, J. Li, Z. Wang, X. Hu, P. Liu, X. Hong, Eur. J. Med. Chem. 83, 466 (2014)

    Article  CAS  PubMed  Google Scholar 

  4. B.J. Smith, J.L. McKimm-Breshkin, M. McDonald, R.T. Fernley, J.N. Varghese, P.M. Colman, J. Med. Chem. 45, 2207 (2002)

    Article  CAS  PubMed  Google Scholar 

  5. Y. Li, A. Silamkoti, G. Kolavi, L. Moua, S. Gulati, G.M. Air, W.J. Brouillette, Bioorg. Med. Chem. 20, 4582 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. U. Grienke, M. Schmidtke, S. von Grafenstein, J. Kirchmair, K.R. Liedl, J.M. Rollinger, Nat. Pro. Rep. 29, 11 (2011)

    Article  Google Scholar 

  7. U. Grienke, M. Schmidtke, S. von Grafenstein, J. Kirchmair, K.R. Liedl, J.M. Rollinger, Nat. Pro. Rep. 29, 1 (2012)

    Article  Google Scholar 

  8. J.E. Mersereau, N. Levy, R.E. Staub, S. Baggett, T. Zogric, S. Chow, W.A. Ricke, M. Tagliaferri, I. Cohen, L.F. Bjeldanes, D.C. Leitman, Mol. Cell. Endocrinol. 283, 49 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. D. Ye, W.-J. Shin, N. Li, W. Tang, E. Feng, J. Li, P.-L. He, J.-P. Zuo, H. Kim, K.-Y. Nam, W. Zhu, B.-L. Seong, K.T. No, H. Jiang, H. Liu, Eur. J. Med. Chem. 54, 764 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. X.Y. Meng, H.X. Zhang, M. Mezei, M. Curr, Comput. Aided. Drug Des. 7, 146 (2011)

    Article  CAS  Google Scholar 

  11. M. Orio, D.A. Pantazis, F. Neese, Photosynth Res. 102, 443 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. E. Kerns, D. Li, Drug-Like Properties: Concepts, Structure Design, and Methods: From ADME to Toxicity Optimization, 1st edn. (Elsevier, Amsterdam, 2008), p. 514

    Google Scholar 

  13. C. Kramer, A. Ting, H. Zheng, J. Hert, T. Schindler, M. Stahl, G. Robb, J.J. Crawford, J. Blaney, S. Montague, A.G. Leach, A.G. Dossetter, E.J. Griffen, J. Med. Chem. 61, 3277 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. J.A. Rocha, N.C.S. Rego, B.T.S. Carvalho, F.I. Silva, J.A. Sousa, R.M. Ramos et al., PLoS ONE 13, e0198476 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. K. Venkata Prasad, S. Muthu, C. Santhamma, J. Mol. Str. 1128, 685 (2017)

    Article  CAS  Google Scholar 

  16. S. Sevvanthi, S. Muthu, M. Raja, J. Mol. Str. 1173, 251 (2018)

    Article  CAS  Google Scholar 

  17. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.A. Cheeseman, G. Calmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, I.A.F. Hratchian, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision B.01 (Gaussian Inc., Wallingford, CT, 2010)

    Google Scholar 

  18. E. Frisch, H.P. Hratchian, R.D. Dennington II et al., Gaussview, Version 5.0.8, 235 (Gaussian Inc., Wallingford, CT, 2009)

    Google Scholar 

  19. M.H. Jamróz, Vibrational Energy Distribution Analysis (VEDA) 4, Warsaw. (2004)

  20. A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)

    Article  CAS  Google Scholar 

  21. N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, J. Comput. Chem. 29, 839 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, J. Comput. Chem. 30, 2785 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. The PyMOL Molecular Graphics System, Version 1.8 Schrodinger, LLC

  24. R.A. Laskowski, M.B. Swindells, J. Chem. Inf. Model. 51(10), 2778 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, J. Comput. Chem. 25(13), 1605 (2004)

    Article  CAS  PubMed  Google Scholar 

  26. Dassault Syst_emes BIOVIA, Discovery Studio, 2016. DS2016Client32, SanDiego: Dassault Syst_emes, (2016)

  27. J.K. Labanowski, J.W. Andzelm, Density Functional Methods in Chemistry (Springer, New York, 1991)

    Book  Google Scholar 

  28. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

    Google Scholar 

  29. V.S. Sambyal, K.N. Goswami, Cryst. Res. Technol. 30, 629 (1995)

    Article  CAS  Google Scholar 

  30. J.P. Jasinski, R.J. Butcher, B. Narayana, M.T. Swamy, H.S. Yathirajan, Acta Cryst. A64, 112 (2008)

    Google Scholar 

  31. S. Muthu, M. Prasath, Spectrochimica Acta A Mol. Biomol. Spectro. 115, 789 (2013)

    Article  CAS  Google Scholar 

  32. R. Shahidha, A.A. Al-Saadi, S. Muthu, Spectrochimica Acta A Mol. Biomol. Spectro. 134, 127 (2015)

    Article  CAS  Google Scholar 

  33. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 19, April 2018, Editor: Russell D. Johnson III

  34. B. Fathimarizwana, J.C. Prasana, C.S. Abraham, S. Muthu, J. Mol. Struct. 1164, 447 (2018)

    Article  CAS  Google Scholar 

  35. A. Choperena, P. Painter, Vib. Spectrosc. 51, 110 (2009)

    Article  CAS  Google Scholar 

  36. N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures (Wiley, New York, 1994)

    Google Scholar 

  37. G. Varsany, Vibrational Spectra of Benzene Derivatives (Academic Press, New York, 1969)

    Google Scholar 

  38. M. Prasath, M. Govindammal, B. Sathya, J. Mol. Struct. 1146, 292 (2017)

    Article  CAS  Google Scholar 

  39. M. Snehalatha, C. Ravikumar, I.H. Joe, V.S. Jayakumar, J. Raman Spectrosc. 40, 1121 (2009)

    Article  CAS  Google Scholar 

  40. E.A. Alodeani, M. Arshad, M.A. Izhari, Asian Pac. J. Trop. Biomed. 5, 676 (2015)

    Article  Google Scholar 

  41. S. Xavier, S. Periandy, K. Carthigayan, S. Sebastian, J. Mol. Struct. 1125, 204 (2016)

    Article  CAS  Google Scholar 

  42. T. Kavitha, G. Velraj, J. Theor. Comput. Chem. 15, 1650039-1 (2016)

    Article  CAS  Google Scholar 

  43. R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955)

    Article  CAS  Google Scholar 

  44. T. Kavitha, G. Velraj, J. Mol. Struct. 1141, 335 (2017)

    Article  CAS  Google Scholar 

  45. T. Kavitha, G. Velraj, J. Mol. Struct. 1155, 819 (2018)

    Article  CAS  Google Scholar 

  46. R.G. Parr, L.V. Szentpaly, S. Liu, J. Am. Chem. Soc. 121, 1922 (1999)

    Article  CAS  Google Scholar 

  47. R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke, J. Chem. Phys. 68, 3801 (1978)

    Article  CAS  Google Scholar 

  48. R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983)

    Article  CAS  Google Scholar 

  49. R.S. Mulliken, J. Chem. Phys. 2, 782–794 (1934)

    Article  CAS  Google Scholar 

  50. E.C. Housecroft, G.S. Alan, Inorganic Chemistry, vol. 3 (Harlow, Pearson Education, 2008), p. 44

    Google Scholar 

  51. T. Hughbanks, R. Hoffmann, J. Am. Chem. Soc. 105, 3528 (1983)

    Article  CAS  Google Scholar 

  52. J.G. Małecki, Polyhedron 29, 1973 (2010)

    Article  CAS  Google Scholar 

  53. J.A. Pople, A.P. Scott, M.W. Wong, L. Radom, Isr. J. Chem. 33, 345 (1993)

    Article  CAS  Google Scholar 

  54. P. Geerlings, F.D. Proft, W. Langenaeker, Chem. Rev. 103, 1793 (2003)

    Article  CAS  PubMed  Google Scholar 

  55. J. Padmanabhan, R. Parthasarathi, V. Subramanian, P.K. Chattaraj, J. Phys. Chem. A 111, 1358 (2007)

    Article  CAS  PubMed  Google Scholar 

  56. E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO Version 3.1, NBO Version 3.1. (n.d.)

  57. C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Adv. Drug Deliv. Rev. 46, 3 (2001)

    Article  CAS  PubMed  Google Scholar 

  58. A.C. Mafud, M.P.N. Silva, G.B.L. Nunes, M.A.R. de Oliveira, L.F. Batista, T.I. Rubio, A.C. Mengarda, E.M. Lago, R.P. Xavier, S.J.C. Gutierrez, P.L.S. Pinto, A.A. da Silva Filho, Y.P. Mascarenhas, J. de Moraes, Toxicol In Vitro 50, 1 (2018)

    Article  CAS  PubMed  Google Scholar 

  59. X.L. Ma, C. Chen, J. Yang, Acta Pharm. Sinic. 26, 500 (2005)

    Article  CAS  Google Scholar 

  60. S. Singh, J. Singh, Med. Res. Rev. 13, 569 (1993)

    Article  CAS  PubMed  Google Scholar 

  61. Y.H. Zhao, J. Le, M.H. Abraham, A. Hersey, P.J. Eddershaw, C.N. Luscombe et al., J. Pharm. Sci. 90, 749 (2001)

    Article  CAS  PubMed  Google Scholar 

  62. S. Yee, Pharm. Res. 14, 763 (1997)

    Article  CAS  PubMed  Google Scholar 

  63. S. Yamashita, T. Furubayashi, M. Kataoka, T. Sakane, H. Sezaki, H. Tokuda, Eur. J. Pharm. Sci. 10, 195 (2000)

    Article  CAS  PubMed  Google Scholar 

  64. F.J. Azeredo, F.T. UchoÃa, T.D. Costa, Rev. Bras. Farm. 90, 321 (2009)

    CAS  Google Scholar 

  65. B.N. Ames, E.G. Gurney, J.A. Miller, H. Bartsch, Proc. Nat. Acad. Sci. 69, 3128 (1972)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Adv. Drug Deliv. Rev. 23, 3 (2001)

    Article  Google Scholar 

  67. M.P. Postigo, R.V.C. Guido, G. Oliva, M.S. Castilho, I.R. Pitta, J.F.C. de Albuquerque et al., J. Chem. Inf. Model. 50, 1693 (2010)

    Article  CAS  PubMed  Google Scholar 

  68. T.I. Oprea, J. Comput. Aid Mol. Des. 14, 251 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Prasath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathya, B., Prasath, M. Spectroscopic (FT-IR, FT-Raman, UV–Vis), quantum chemical calculation and molecular docking evaluation of liquiritigenin: an influenza A (H1N1) neuraminidase inhibitor. Res Chem Intermed 45, 2135–2166 (2019). https://doi.org/10.1007/s11164-018-03727-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-03727-7

Keywords

Navigation