Skip to main content
Log in

A general strategy toward the large-scale synthesis of the noble metal-oxide nanocrystal hybrids with intimate interfacial contact for the catalytic reduction of p-nitrophenol and photocatalytic degradation of pollutants

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The construction of noble metal-oxide nanocrystal hybrids (MOHs) with good interface contact, broadly tunable composition and high yield is critical for their application in the advanced fields. In this paper, a general route was developed for constructing MOHs with intimate interfacial contact based on the coordination of an organic agent with multiple kinds of metal precursors. In the synthesis, critic acid, desirable sources for metal nanoparticles (NPs; for example, Ag+ salts), oxides (for example, Zn2+ salts) and ethylene glycol were dissolved in water. After heating at low temperature to produce the precursor gels and subsequent calcination under air, one kind of the ions (Zn2+) was transformed into an oxide (ZnO) in company with the reduction of another ion (Ag+) to generate metal NPs (Ag). Benefitting from the uniform distribution of Ag and Zn precursor in the gels, the Ag/ZnO composites with good interface contact were finally formed. The Ag/ZnO hybrids can be used as effective catalysts for the catalytic reduction of p-nitrophenol and photocatalytic degradation of pollutants. Under optimized conditions, the Ag/ZnO showed a rate approximately 1.5 times higher than that of Degussa P25 TiO2 for the degradation of rhodamine B. The OH· radicals and ·O2 play predominant roles in the photocatalytic reaction. The Ag/ZnO can also act as an effective catalyst for the reduction of p-nitrophenol with good reuse performance. The present route is also suitable to construct MOHs with other components (Pt/TiO2, Pt/ZnO, etc.). The route is promising to produce MOHs due to the virtues of the easy synthesis process and high yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Schneider, M. Matsuoka, M. Takeuchi, J.L. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919–9986 (2014)

    Article  CAS  Google Scholar 

  2. B.H. Wu, N.F. Zheng, Nano Today 8, 168–197 (2013)

    Article  Google Scholar 

  3. R.B. Jiang, B.X. Li, C.H. Fang, J.F. Wang, Adv. Mater. 26, 5274–5309 (2014)

    Article  CAS  Google Scholar 

  4. A.P. Wu, C.G. Tian, H.J. Yan, Y. Hong, B.J. Jiang, H.G. Fu, J. Mater. Chem. A 2, 3015–3023 (2014)

    Article  CAS  Google Scholar 

  5. B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, Res. Chem. Intermed. 39, 318–3197 (2013)

    Article  Google Scholar 

  6. N.S. Han, D. Kim, J.W. Lee, J. Kim, H.S. Shim, Y.J. Lee, A.C.S. Appl, Mater. Interfaces 8, 1067–1072 (2016)

    Article  CAS  Google Scholar 

  7. A.A. Ashkarran, M. Ghavamipour, H. Hamidinezhad, H. Haddadi, Res. Chem. Intermed. 41, 7299–7311 (2015)

    Article  CAS  Google Scholar 

  8. H. Tada, T. Kiyonaga, S. Naya, Chem. Soc. Rev. 38, 1849–1858 (2009)

    Article  CAS  Google Scholar 

  9. Y. Lu, J.L. Zhang, L. Ge, C. Han, P. Qiu, S. Fang, J. Colloid Interface Sci. 483, 146–153 (2016)

    Article  CAS  Google Scholar 

  10. S. Neatu, J.A. Maciá-Agulló, P. Concepción, H. Garcia, J. Am. Chem. Soc. 136, 15969–15976 (2014)

    Article  CAS  Google Scholar 

  11. S.T. Kochuveedu, Y.H. Jang, D.H. Kim, Chem. Soc. Rev. 42, 8467–8493 (2013)

    Article  CAS  Google Scholar 

  12. J.L. Zhang, Y.M. Wu, M.Y. Xing, S.A.K. Leghari, S. Sajjad, Energy Environ. Sci. 3, 715–726 (2010)

    Article  Google Scholar 

  13. A. Vaneski, A.S. Susha, J. Rodríguez-Fernández, M. Berr, F. Jäckel, J. Feldmann, A.L. Rogach, Adv. Funct. Mater. 21, 1547–1556 (2011)

    Article  CAS  Google Scholar 

  14. H. Gu, Y. Yang, J.X. Tian, G.Y. Shi, A.C.S. Appl, Mater. Interfaces 5, 6762–6768 (2013)

    Article  CAS  Google Scholar 

  15. Q. Fu, W.-X. Li, Y.X. Yao, H.Y. Liu, H.-Y. Su, D. Ma, X.-K. Gu, L.M. Chen, Z. Wang, H. Zhang, B. Wang, X.H. Bao, Science 328, 1141 (2010)

    Article  CAS  Google Scholar 

  16. C. Pacholski, A. Kornowski, H. Weller, Angew. Chem. Int. Ed. 116, 4878–4881 (2004)

    Article  Google Scholar 

  17. Q. Deng, X.W. Duan, H.L. Dickon, H.B. Ng, Y. Tang, M.G. Yang, ZKWu Kong, W.P. Cai, G.Z. Wang, ACS Appl. Mater. Interfaces 4, 6030–6037 (2012)

    Article  CAS  Google Scholar 

  18. C.L. Ren, B.F. Yang, M. Wu, J. Xu, Z.P. Fu, T. Guo, Y.X. Zhao, C.Q. Zhu, J. Hazard. Mater. 182, 123–129 (2010)

    Article  CAS  Google Scholar 

  19. Z.Z. Han, L.L. Ren, Z.H. Cui, C.Q. Chen, H.B. Pan, J.Z. Chen, Appl. Catal. B Environ. 126, 298–305 (2012)

    Article  CAS  Google Scholar 

  20. Y.M. Liang, N. Guo, L.L. Li, R.Q. Li, G.J. Ji, S.C. Gan, New J. Chem. 40, 1587–1594 (2016)

    Article  CAS  Google Scholar 

  21. S. Sarkar, D. Basak, CrystEngComm 15, 7606–7614 (2013)

    Article  CAS  Google Scholar 

  22. J.F.S. Fernando, M.P. Shortell, C.J. Noble, J.R. Harmer, E.A. Jaatinen, E.R. Waclawik, A.C.S. Appl, Mater. Interfaces 8, 14271–14283 (2016)

    Article  CAS  Google Scholar 

  23. E.R. Encina, M.A. Pérez, E.A. Coronado, RSC Adv. 5, 56210–56218 (2015)

    Article  CAS  Google Scholar 

  24. Y.Y. Sun, L. Jiang, T. Zeng, J. Wei, L. Liu, Y. Jin, Z.F. Jiao, X.S. Sun, New J. Chem. 39, 2943–2948 (2015)

    Article  CAS  Google Scholar 

  25. M.J. Sampaio, M.J. Lima, D.L. Baptista, A.M.T. Silva, C.G. Silva, J.L. Faria, Chem. Eng. J. 10, 1016 (2016)

    Google Scholar 

  26. M.J. Height, S.E. Pratsinis, O. Mekasuwandumrong, P. Praserthdam, Appl. Catal. B Environ. 63, 305–312 (2006)

    Article  CAS  Google Scholar 

  27. Q.Y. Hu, X.W. Liu, C.T. Wu, Q. You, T.C. Shi, W. Zhang, RSC Adv. 6, 1542–1548 (2016)

    Article  CAS  Google Scholar 

  28. J. Zhang, X.H. Liu, S.H. Wu, M.J. Xu, X.Z. Guo, S.R. Wang, J. Mater. Chem. 20, 6453–6459 (2010)

    Article  CAS  Google Scholar 

  29. Y.Z. Chen, D.Q. Zeng, K. Zhang, A.L. Lu, L.S. Wang, D.L. Peng, Nanoscale 6, 874–881 (2014)

    Article  CAS  Google Scholar 

  30. X.M. Hou, L.X. Wang, F. Li, G.F. He, L.Q. Li, Mater. Lett. 159, 502–505 (2015)

    Article  CAS  Google Scholar 

  31. F.X. Xiao, F.C. Wang, X.Z. Fu, Y. Zheng, J. Mater. Chem. 22, 2868–2877 (2012)

    Article  CAS  Google Scholar 

  32. T.T. Jiang, X.Y. Qin, Y. Sun, M. Yu, RSC Adv. 5, 65595–65599 (2015)

    Article  CAS  Google Scholar 

  33. X.M. Hou, L.X. Wang, RSC Adv. 4, 56945–56951 (2014)

    Article  CAS  Google Scholar 

  34. S. Tao, M. Yang, H.H. Chen, M.Y. Ren, G.W. Chen, RSC Adv. 6, 45503–45511 (2016)

    Article  CAS  Google Scholar 

  35. M.L. Yue, M. Yang, D. Zhang, D. Xiang, Y. Hou, J.C. Han, J. Phys. Chem. C 119, 4199–4207 (2015)

    Article  CAS  Google Scholar 

  36. M.N. Tahir, F. Natalio, M.A. Cambaz, M. Martin Panthöfer, R. Branscheid, U. Kolb, W. Tremel, Nanoscale 2013(5), 9944–9949 (2013)

    Article  Google Scholar 

  37. J.Y. Xiong, Q. Sun, J. Chen, Z. Li, S.X. Dou, CrystEngComm 18, 1713–1722 (2016)

    Article  CAS  Google Scholar 

  38. A. Vaneski, A.S. Susha, J. Rodríguez-Fernández, M. Berr, F. Jäckel, J. Feldmann, A.L. Rogach, Adv. Funct. Mater. 21, 1547–1556 (2011)

    Article  CAS  Google Scholar 

  39. W.W. Lu, S.Y. Gao, J.J. Wang, J. Phys. Chem. C 112, 16792–16800 (2008)

    Article  CAS  Google Scholar 

  40. D. Zhang, J. Li, Y.S. Chen, Q. Wu, Y.P. Ding, CrystEngComm 14, 6738–6743 (2012)

    Article  CAS  Google Scholar 

  41. Y.H. Zheng, L.R. Zheng, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei, Inorg. Chem. 46, 6980–6986 (2007)

    Article  CAS  Google Scholar 

  42. L.H. Zu, Y. Qin, J.H. Yang, J. Mater. Chem. A 3, 10209–10218 (2015)

    Article  CAS  Google Scholar 

  43. W.W. Xia, C. Mei, X.H. Zeng, G.K. Fan, J.F. Lu, X.D. Meng, X.S. Shen, A.C.S. Appl, Mater. Interfaces 7, 11824–11832 (2015)

    Article  CAS  Google Scholar 

  44. M.D.L.R. Peralta, U. Pal, R.S. Zeferino, A.C.S. Appl, Mater. Interfaces 4, 4807–4816 (2012)

    Article  Google Scholar 

  45. C.D. Gu, C. Cheng, H.Y. Huang, T.L. Wong, N. Wang, T.Y. Zhang, Cryst. Growth Des. 7, 3278–3285 (2009)

    Article  Google Scholar 

  46. L. Wang, C.G. Tian, B.L. Wang, R.H. Wang, W. Zhou, H.G. Fu, Chem. Commun. 44, 5411–5413 (2008)

    Article  Google Scholar 

  47. C.G. Tian, Q. Zhang, A.P. Wu, M.J. Jiang, Z.L. Liang, B.J. Jiang, H.G. Fu, Chem. Commun. 48, 2858–2860 (2012)

    Article  CAS  Google Scholar 

  48. J. Lin, M. Yu, C.K. Lin, X.M. Liu, J. Phys. Chem. C 111, 5835–5845 (2007)

    Article  CAS  Google Scholar 

  49. C. Sánchez, J. Doria, C. Paucar, M. Hernandez, A. Mósquera, J.E. Rodrĺíguez, A. Gómez, E. Baca, O. Morán, Phys. B 405, 3679–3684 (2010)

    Article  Google Scholar 

  50. Y.W. Jiang, S.G. Yang, Z.H. Hua, H.B. Huang, Angew. Chem. Int. Ed. 48, 8529–8531 (2009)

    Article  CAS  Google Scholar 

  51. G. Gong, Y. Liu, B. Mao, B. Wang, L. Tan, D. Li, Y. Liu, W. Shi, RSC Adv. 6, 99023–99033 (2016)

    Article  CAS  Google Scholar 

  52. B. Mao, C.-H. Chuang, C. McCleese, J. Zhu, C. Burda, J. Phys. Chem. C 118, 13883–13889 (2014)

    Article  CAS  Google Scholar 

  53. B. Mao, C.-H. Chuang, F. Lu, L. Sang, J. Zhu, C. Burda, J. Phys. Chem. C 117, 648–656 (2013)

    Article  CAS  Google Scholar 

  54. F.-R. Wang, C.-X. Luo, X.-Y. Zhang, J.-K. Liu, X.-H. Yang, Res. Chem. Intermed. 42, 6209–6220 (2016)

    Article  CAS  Google Scholar 

  55. L. Shang, Y.H. Liang, M.Z. Li, G.I.N. Waterhouse, P. Tang, D. Ma, L.-Z. Wu, C.-H. Tung, T.R. Zhang, Adv. Funct. Mater. 27, 1606215 (2017)

    Article  Google Scholar 

  56. P. Hervés, M. Pérez-Lorenzo, L.M. Liz-Marzán, J. Dzubiella, Y. Lu, M. Ballauff, Chem. Soc. Rev. 41, 5577–5587 (2012)

    Article  Google Scholar 

  57. H.J. Li, H.X. Wu, Y.J. Zhai, X.L. Xu, Y.D. Jin, ACS Catal. 3, 2045–2051 (2013)

    Article  CAS  Google Scholar 

  58. X.K. Kong, Z.Y. Sun, M. Chen, C.L. Chen, Q.W. Chen, Energy Environ. Sci. 6, 3260–3266 (2013)

    Article  CAS  Google Scholar 

  59. L. Hu, R.R. Zhang, L.Z. Wei, F.P. Zhang, Q.W. Chen, Nanoscale 7, 450–454 (2015)

    Article  CAS  Google Scholar 

  60. F. Wang, S.Y. Song, K. Li, J.Q. Li, J. Pan, S. Yao, X. Ge, J. Feng, X. Wang, H.J. Zhang, Adv. Mater. 28, 10679–10683 (2016)

    Article  CAS  Google Scholar 

  61. X.M. Gu, W. Qi, S.C. Wu, Z.H. Sun, X.Z. Xu, D.S. Su, Catal. Sci. Technol. 4, 1730–1733 (2014)

    Article  CAS  Google Scholar 

  62. F. Yang, C. Chi, C.X. Wang, Y. Wang, Y.F. Li, Green Chem. 18, 4254–4262 (2016)

    Article  CAS  Google Scholar 

  63. T.R. Lin, J. Wang, L.Q. Guo, F.F. Fu, J. Phys. Chem. C 119, 13658–13664 (2015)

    Article  CAS  Google Scholar 

  64. H.W. Hu, X.W. Wang, D.G. Miao, Y.F. Wang, C.L. Lai, Y.J. Guo, W.Y. Wang, J.H. Xin, H. Hu, Chem. Commun. 51, 16699–16702 (2015)

    Article  CAS  Google Scholar 

  65. Y. Tian, Y.Y. Cao, F. Pang, G.Q. Chen, X. Zhang, RSC Adv. 4, 43204–43211 (2014)

    Article  CAS  Google Scholar 

  66. M. Bano, D. Ahirwar, M. Thomas, G.A. Naikoo, M.U. Sheikh, F. Khan, New J. Chem. 40, 6787–6795 (2016)

    Article  CAS  Google Scholar 

  67. M. Xu, Y.M. Sui, C. Wang, B. Zhou, Y.J. Wei, B. Zou, J. Mater. Chem. A 3, 22339–22346 (2015)

    Article  CAS  Google Scholar 

  68. M.H. Rashid, T.K. Mandal, J. Phys. Chem. C 111, 16750–16760 (2007)

    Article  CAS  Google Scholar 

  69. R. Eising, A.M. Signori, S. Fort, J.B. Domingos, Langmuir 27, 11860–11866 (2011)

    Article  CAS  Google Scholar 

  70. Y.Y. Liang, Y.G. Li, H.L. Wang, H.J. Dai, J. Am. Chem. Soc. 135, 2013–2036 (2013)

    Article  CAS  Google Scholar 

  71. P.H. Zhang, Y.M. Sui, G.J. Xiao, Y.N. Wang, C.Z. Wang, B.B. Liu, G.T. Zou, B. Zou, J. Mater. Chem. A 1, 1632–1638 (2013)

    Article  CAS  Google Scholar 

  72. N. Muthuchamy, A. Gopalan, K.P. Lees, RSC Adv. 5, 76170–76181 (2015)

    Article  CAS  Google Scholar 

  73. A. Murugadoss, A. Chattopadhyay, Nanotechnology 19, 15603–15612 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support of this research by the National Natural Science Foundation of China (Nos. 21571054, 21601055, 51372071) and Fundamental Research Funds for the Central Universities (No. 2572015CB27).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoguang Zhou, Yang Qu or Chungui Tian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1759 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Jiao, Y., Wu, A. et al. A general strategy toward the large-scale synthesis of the noble metal-oxide nanocrystal hybrids with intimate interfacial contact for the catalytic reduction of p-nitrophenol and photocatalytic degradation of pollutants. Res Chem Intermed 43, 4759–4779 (2017). https://doi.org/10.1007/s11164-017-2910-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-2910-y

Keywords

Navigation