Skip to main content

Advertisement

Log in

Low-cost synthesis of titanium dioxide anatase nanoclusters as advanced materials for hydrogen photoproduction

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Sub-nm titanium dioxide (TiO2) clusters are synthesized via the hydrolysis of TiCl4 in order to produce clean and surfactant-free oxide surfaces. By controlling the synthesis, stable TiO2 nanoclusters with well-defined size distributions are obtained. The prepared clusters are characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy in order to gain information about the size and morphology of the material. Photoresponsive methylene blue dye monitoring and hydrogen production under UV irradiation are described in detail and performed. The rate order of photodegradation and hydrogen photoproduction under UV light irradiation of the samples is increased by decreasing the size of TiO2 nanoparticles from 47 nm to 3 nm. The hydrogen evolution rate of TiO2 nanoclusters with size lower than 5 nm is about 3.03 times and 1.96 times faster than that of 47 nm of TiO2 and 12 nm of TiO2, respectively. The enhanced photocatalytic performance suggests that the ternary TiO2 nanoclusters can serve as a highly efficient catalyst for photodegradation of organic pollutants in aquatic environments and hydrogen production from water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. M. Tomkiiewicz, Catal. Today 58, 115 (2000)

    Article  Google Scholar 

  2. S. Tsuneyasu, K. Ichihara, K. Nakamura, N. Kobayashi, Phys. Chem. Chem. Phys. 18, 16317–16324 (2016)

    Article  CAS  Google Scholar 

  3. Y.J. Yuan, Z.J. Ye, H.W. Lu, B. Hu, Y.H. Li, D.Q. Chen, J.-S. Zhong, Z.T. Yu, Z.G. Zou, ACS Catal. 6(2), 532–541 (2016)

    Article  CAS  Google Scholar 

  4. Y. Yuan, H. Lu, Z. Ji, J. Zhong, M. Ding, D. Chen, Y. Li, W. Tu, D. Cao, Z. Yu, Z. Zou, Chem. Eng. J. 275, 8–16 (2015)

    Article  CAS  Google Scholar 

  5. G.K. Mor, M.A. Carvalho, O.K. Varghese, M.V. Pishko, C.A. Grimes, J. Mater. Res. 19, 628–634 (2004)

    Article  CAS  Google Scholar 

  6. C. Garzella, E. Comini, E. Tempesti, C. Frigeri, G. Sberveglieri, Sens. Actuators, B 68, 189–196 (2000)

    Article  CAS  Google Scholar 

  7. V. Subramanian, E.E. Wolf, P.V. Kamat, J. Am. Chem. Soc. 126, 4943–4950 (2004)

    Article  CAS  Google Scholar 

  8. C.M. Wang, A. Heller, H. Gerischer, J. Am. Chem. Soc. 114, 5230–5234 (1992)

    Article  CAS  Google Scholar 

  9. K. Vinodgopal, U. Stafford, K.A. Gray, P.V. Kamat, J. Phys. Chem. 98, 6797–6803 (1994)

    Article  CAS  Google Scholar 

  10. K. Vinodgopal, S. Hotchandani, P.V. Kamat, J. Phys. Chem. 97, 9040–9044 (1993)

    Article  CAS  Google Scholar 

  11. Y.Z. Zhu, Y.L. Cao, J. Ding, Z.H. Li, J.S. Liu, Y.B. Chi, Appl. Phys. A Mater. Sci. Process. 94, 731–734 (2009)

    Article  CAS  Google Scholar 

  12. Y. Zhu, Y. Cao, Z. Li, J. Ding, J. Liu, Y. Chi, J. Colloid Interface Sci. 306(1), 133–136 (2007)

    Article  CAS  Google Scholar 

  13. D.C. Pan, N.N. Zhao, Q. Wang, S.C. Jiang, X.L. Ji, L.J. An, Adv. Mater. 17, 1991–1995 (2005)

    Article  CAS  Google Scholar 

  14. Q.Q. Qiao, J.T. Mcleskey, Appl. Phys. 86, 153501–153505 (2005)

    Google Scholar 

  15. U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Nature 395, 583–585 (1998)

    Article  CAS  Google Scholar 

  16. B. Oregan, M. Gratzel, Nature 353, 737–740 (1991)

    Article  CAS  Google Scholar 

  17. G.E. Morris, W.A. Skinner, P.G. Self, R.S. Smart, Colloid Surf. A 155, 27–41 (1999)

    Article  CAS  Google Scholar 

  18. J.H. Braun, A. Baidins, R.E. Marganski, Prog. Org. Coat. 20, 105–138 (1992)

    Article  CAS  Google Scholar 

  19. G. Ramakrishna, H.N. Ghosh, Langmuir 19, 505 (2003)

    Article  CAS  Google Scholar 

  20. E. Pelizzetti, C. Minero, Elecrochim. Acta 38, 47–55 (1993)

    Article  CAS  Google Scholar 

  21. S. Tada-Oikawa, G. Ichihara, H. Fukatsu, Y. Shimanuki, N. Tanaka, E. Watanabe, Y. Suzuki, M. Murakami, K. Izuoka, J. Chang, W. Wu, Y. Yamada, S. Ichihara, Int. J. Mol. Sci. 17, 576 (2016)

    Article  Google Scholar 

  22. S. Sahni, S.B. Reddy, B.S. Murty, Mater. Sci. Eng. A 758, 452–453 (2007)

    Google Scholar 

  23. B. Li, X. Wang, M. Yan, L. Li, Mater. Chem. Phys. 78, 184–188 (2002)

    Article  CAS  Google Scholar 

  24. Y.V. Kolenko, B.R. Churagulov, M. Kunst, L. Mazerolles, C. Colbeau-justin, Appl. Catal. B Environ. 54, 51–58 (2004)

    Article  CAS  Google Scholar 

  25. W. Zhou, Q. Cao, S. Tang, Powder Technol. 168, 32–36 (2006)

    Article  CAS  Google Scholar 

  26. S.Y. Baek, S.Y. Chai, K.S. Hur, W.I. Lee, Bull. Korean Chem. Soc. 26, 1333–1334 (2005)

    Article  CAS  Google Scholar 

  27. J.W. Seo, H. Chung, M.Y. Kim, J. Lee, I.H. Choi, J. Cheon, Small 3, 850–853 (2007)

    Article  CAS  Google Scholar 

  28. X. Chen, S.S. Mao, Chem. Rev. 107, 2891–2959 (2007)

    Article  CAS  Google Scholar 

  29. D.P. Macwan, P.N. Dave, S. Chaturvedi, J. Mater. Sci. 46, 3669–3686 (2011)

    Article  CAS  Google Scholar 

  30. T.C. Long, J. Tajuba, P. Sama, N. Saleh, C. Swartz, J. Parker, S. Hester, G.V. Lowry, B. Veronesi, Environ. Health Perspect. 115, 1631–1637 (2007)

    Article  CAS  Google Scholar 

  31. I.S. Bouhaik, P. Leroy, P. Ollivier, M. Azaroual, L. Mercury, J. Colloid Interface Sci. 406, 75–85 (2013)

    Article  Google Scholar 

  32. K. Liu, X. Lin, J. Zhao, Int. J. Nanomed. 8, 2509–2520 (2013)

    Google Scholar 

  33. J. Yu, Y. Su, B. Cheng, M. Zhou, J. Mol. Catal. A: Chem. 258(1/2), 104–112 (2006)

    Article  CAS  Google Scholar 

  34. W. Kai, Z. Li-Juan, X. Zhi-Jian, Q. Bin, D. Lan-Bo, Z. Xiu-Ling, J. Inorg. Mater. 29(2), 131–136 (2014)

    Article  Google Scholar 

  35. X.B. Chen, Y.B. Lou, A.C.S. Samia, C. Burda, J.L. Gole, Adv. Funct. Mater. 15, 41–49 (2005)

    Article  CAS  Google Scholar 

  36. H. Wang, Y. Wu, B.Q. Xu, Appl. Catal. B 59, 139–146 (2005)

    Article  CAS  Google Scholar 

  37. T. Ohsaka, F. Izumi, Y. Fujiki, J. Raman Spectrosc. 7(6), 321–324 (1978)

    Article  Google Scholar 

  38. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesly Publishing Co. Inc, Washington, 1976). (Ch. 14.)

    Google Scholar 

  39. D.B. Warheit, R.A. Hoke, C. Finlay, E.M. Donner, K.L. Reed, C.M. Sayes, Toxicol. Lett. 171, 99–110 (2007)

    Article  CAS  Google Scholar 

  40. E. Fabian, R. Landsiedel, L. Ma-Hock, K. Wiench, W. Wohlleben, B. Van Ravenzwaay. Arch. Toxicol. 82, 151–157 (2008)

    Article  CAS  Google Scholar 

  41. R. Carbone, I. Marangi, A. Zanardi, L. Giorgetti, E. Chierici, G. Berlanda, A. Podestà, F. Fiorentini, G. Bongiorno, P. Piseri, P.G. Pelicci, P. Milani, Biomaterials 27, 3221–3229 (2006)

    Article  CAS  Google Scholar 

  42. M.T. Uddin, O. Babot, L. Thomas, C. Olivier, M. Redaelli, M. D’Arienzo, F. Morazzoni, W. Jaegermann, N. Rockstroh, H. Junge, T. Toupance, J. Phys. Chem. C 119(13), 7006–7015 (2015)

    Article  CAS  Google Scholar 

  43. M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, M.M. Müller, H.J. Kleebe, K. Rachut, J. Ziegler, A. Klein, W. Jaegermann, J. Phys. Chem. C 117(42), 22098–22110 (2013)

    Article  CAS  Google Scholar 

  44. D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, J. Phys. Chem. B 107, 4545–4549 (2003)

    Article  CAS  Google Scholar 

  45. K.R.N. Pai, G.S. Anjusree, T.G. Deepak, D. Subash, S.V. Nair, A.S. Nair, RSC Adv. 4, 36821–36827 (2014)

    Article  CAS  Google Scholar 

  46. M. Ouzzine, J.A. Maciá-Agulló, M.A. Lillo-Ródenas, C. Quijad, A. Linares-Solano, Appl. Catal. B Environ. 154–155, 285–293 (2014)

    Article  Google Scholar 

  47. V. Subramanian, E.E. Wolf, P.V. Kamat, J. Am. Chem. Soc. 126, 4943–4950 (2004)

    Article  CAS  Google Scholar 

  48. M. Murdoch, G.I.N. Waterhouse, M.A. Nadeem, J.B. Metson, M.A. Keane, R.F. Howe, J. Llorca, H. Idriss, Nat. Chem. 3, 489–492 (2011)

    CAS  Google Scholar 

  49. A. Primo, A. Corma, H. Garcia, Phys. Chem. Chem. Phys. 13, 886–910 (2011)

    Article  CAS  Google Scholar 

  50. K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, J. Am. Chem. Soc. 130, 1676–1680 (2008)

    Article  CAS  Google Scholar 

  51. C.G. Silva, R. Juarez, T. Marino, R. Molinari, H. Garcia, J. Am. Chem. Soc. 133, 595–602 (2011)

    Article  Google Scholar 

  52. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, Energy Rev. 11, 401–425 (2007)

    CAS  Google Scholar 

  53. D. Jing, L. Guo, Catal. Commun. 8, 795–799 (2007)

    Article  CAS  Google Scholar 

  54. J. Yu, L. Qi, M. Jaroniec, J. Phys. Chem. C 114, 13118–13125 (2010)

    Article  CAS  Google Scholar 

  55. Y. Attia, Mater. Express 7(3), 211–219 (2016)

    Article  Google Scholar 

  56. Y. Attia, D. Buceta, C. Blanco-Varela, M. Mohamed, G. Barone, M. López-Quintela, J. Am. Chem. Soc. 136(4), 1182–1185 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We want to acknowledge the members of NILES in Cairo University (Egypt), Taif University (Saudi Arabia) and Nanomag (Spain).

Author contributions

TA and YA conceived and designed the experiments; TA and YA performed the experiments; YA analyzed the data; TA contributed reagents, materials, and analysis tools; YA wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser A. Attia.

Ethics declarations

Conflict of interest

We declare no conflict of interest. The funding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attia, Y.A., Altalhi, T.A. Low-cost synthesis of titanium dioxide anatase nanoclusters as advanced materials for hydrogen photoproduction. Res Chem Intermed 43, 4051–4062 (2017). https://doi.org/10.1007/s11164-017-2862-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-2862-2

Keywords

Navigation