Skip to main content
Log in

Spectroscopic, thermal, non-isothermal decomposition kinetics and quantum chemical computational studies of Ni(II)- and Cu(II)-Schiff base complexes

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Herein we report spectroscopic, thermal, non-isothermal decomposition kinetics and theoretical studies of two mononuclear Ni(II)- and Cu(II)-complex of general formula [M(L)(H2O)]·xH2O; {M = Ni(II) & Cu(II)} derived from tridentate 2,4-dichloro-6-{[(5-chloro-2-sulfanylphenyl)imino]methyl}phenol ligand (H2L). These compounds were synthesized and characterized by various physicochemical and spectral techniques. Thermal decomposition of complexes was studied in four steps at different temperature regions to understand the degradation pattern of complexes under nitrogen atmosphere up to 1073 K at the 10 K min−1 heating rate. The non-isothermal kinetic parameters viz. activation energy (E*), pre-exponential factor (Z), entropy of activation (ΔS*), enthalpy of activation (ΔH*) and free energy of activation (ΔG*) of degradation process were calculated using Coats–Redfern (C–R), Piloyan–Novikova (P–N) and Horowitz–Metzger (H–M) methods assuming first order degradation and proposing a random nucleation mechanism of thermal decomposition. Quantum chemical computational investigations were carried out at the B3LYP level using 6-31G basis set. The calculated harmonic vibrations were compatible with the observed FTIR and Raman frequencies. The thermodynamic properties (C p,m °; S m ° and H m °) with varying temperatures up to 500 K and non-linear optical properties were also evaluated at the same level of theory.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.E. Brown, D. Dollimore, A.K. Galwey, Comprehensive Chemical Kinetics (Elsevier, Amsterdam, 1980)

    Google Scholar 

  2. M.E. Brown, Techniques and Applications, 2nd edn. (Kluwer, London, 2001)

    Google Scholar 

  3. S. Vyazovkin, Anal. Chem. 80, 4301–4316 (2008)

    Article  CAS  Google Scholar 

  4. A. Khawam, D.R. Flanagan, J. Pharm. Sci. 95(3), 472–498 (2006)

    Article  CAS  Google Scholar 

  5. J.A. Conesa, A. Marcilla, J.A. Caballero, R. Font, J. Anal. Appl. Pyrol. 58(59), 617–633 (2001)

    Article  Google Scholar 

  6. T. Sun, Y. Zhao, J. Jin, D. Wang, J. Therm. Anal. 45, 1105–1109 (1995)

    Article  Google Scholar 

  7. Q.P. Hu, X.G. Cui, Z.H. Yang, J. Therm. Anal. 48, 1379–1384 (1997)

    Article  CAS  Google Scholar 

  8. A.W. Coats, J.P. Redfern, Nature 201, 68–69 (1964)

    Article  CAS  Google Scholar 

  9. G.O. Piloyan, O.S. Novikova, Russ. J. Inorg. Chem. 12, 313 (1966)

    Google Scholar 

  10. H.H. Horowitz, G. Metzger, Anal. Chem. 35, 1464–1468 (1963)

    Article  CAS  Google Scholar 

  11. S. Vyazovkin, C.A. Wight, Thermochim. Acta 340(341), 53–68 (1999)

    Article  Google Scholar 

  12. B.S. Kusmariya, A. Tiwari, A.P. Mishra, G.A. Naikoo, J. Mol. Struct. 1119, 115–123 (2016). doi:10.1016/j.molstruc.2016.04.056

    Article  CAS  Google Scholar 

  13. A. Bhunia, S. Manna, S. Mistri, A. Paul, R.K. Manne, M.K. Santra, V. Bertolasi, S.C. Mann, RSC Adv. (2015). doi:10.1039/C5RA12324K

    Google Scholar 

  14. R.C. Dunbara, J.D. Steill, J. Oomens, Int. J. Mass Spectrom. 297, 107–115 (2010). doi:10.1016/j.ijms.2010.07.001

    Article  Google Scholar 

  15. M. Odabasoglu, C. Albayrak, B. Kosar, O. Büyükgüngör, Spectrochim. Acta A 92, 357–364 (2012). doi:10.1016/j.saa.2012.02.101

    Article  CAS  Google Scholar 

  16. B.S. Kusmariya, A.P. Mishra, J. Mol. Struct. 1101, 176–188 (2015). doi:10.1016/j.molstruc.2015.08.026

    Article  CAS  Google Scholar 

  17. B.S. Kusmariya, A.P. Mishra, J. Mol. Model. 21(278), 1–14 (2015). doi:10.1007/s00894-015-2805-z

    CAS  Google Scholar 

  18. M.A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  CAS  Google Scholar 

  19. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  20. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision D.01 (Gaussian Inc., Wallingford, 2004)

    Google Scholar 

  21. G.A. Zhurko; Chemcraft version 1.7(build375). http://www.chemcraftprog.com

  22. R.K. Jain, A.P. Mishra, P. Gupta, J. Therm. Anal. Calorim. 110, 529–534 (2012). doi:10.1007/s10973-012-2401-8

    Article  CAS  Google Scholar 

  23. A. Khawam, D.R. Flanagan, J. Phys. Chem. B 110(35), 17315–17328 (2006). doi:10.1021/jp062746a

    Article  CAS  Google Scholar 

  24. S. Shukla, A.P. Mishra, J. Therm. Anal. Calorim. 107, 111–117 (2012). doi:10.1007/s10973-011-1616-4

    Article  CAS  Google Scholar 

  25. B.S. Kusmariya, S. Tiwari, A. Tiwari, A.P. Mishra, G.A. Naikoo, U.J. Pandit, J. Mol. Struct. 1116, 279–291 (2016). doi:10.1016/j.molstruc.2016.03.029

    Article  CAS  Google Scholar 

  26. F. Dogan, M. Ulusoy, O.F. Ozturk, I. Kaya, B. Saith, J. Therm. Anal. Calorim. 96, 267–276 (2009)

    Article  CAS  Google Scholar 

  27. N.T. Madhu, P.K. Radhakrishnan, W. Linert, J. Therm. Anal. Calorim. 84, 607–611 (2006)

    Article  CAS  Google Scholar 

  28. B. Kosar, C. Albayrak, Spectrochim. Acta A 78, 160–167 (2011). doi:10.1016/j.saa.2010.09.016

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to the Head, Department of Chemistry, Dr. H. S. Gour Central University, Sagar India, for providing departmental facilities. We thank the Sophisticated Instrumentation Center, Dr. H. S. Gour Central University, Sagar for making available thermal analysis. We acknowledge the Sophisticated Analytical Instrument Facility (SAIF), Panjab University, Chandigarh, India for elemental analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Mishra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 365 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusmariya, B.S., Tiwari, A., Naikoo, G.A. et al. Spectroscopic, thermal, non-isothermal decomposition kinetics and quantum chemical computational studies of Ni(II)- and Cu(II)-Schiff base complexes. Res Chem Intermed 43, 1671–1687 (2017). https://doi.org/10.1007/s11164-016-2722-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2722-5

Keywords

Navigation