Skip to main content
Log in

The effect of pressure on morphological features and quality of synthesized graphene

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Graphene was grown on copper foils using a low pressure chemical vapor deposition technique. In this experiment the pressure varied from 0.1 to 4 Torr, the time was maintained at 150 s, the temperature was kept at 1000 °C, and the flow rate of hydrogen and methane was 10 and 30 sccm, respectively. To characterize the graphene layer formed on the copper foil, Raman spectra and SEM were analyzed. From the Raman spectra of samples, the ratio of I D/I G increases and the grain size of synthesized graphene samples decreases with rising pressure of the reaction chamber. The effect of low pressure on the density is clearly obvious since the ratio of I D/I G is less than 0.2. A lower value showed fewer defects. For the first time, MountainsMap Premium and Gwyddion software were used to investigate the morphological characteristics and quality of graphene samples. The results suggest that the density of graphene particles on the surface rises with rising pressure. It can be concluded that the density, uniformity, and the grain size of the synthesized graphene are controlled by changing the pressure of the reaction chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)

    Article  CAS  Google Scholar 

  2. H. Hirai, H. Tsuchiya, Y. Kamakura, N. Mori, M. Ogawa, Electron mobility calculation for graphene on substrates. J. Appl. Phys. 116, 083703 (2014)

    Article  Google Scholar 

  3. I.A. Ovid’co, Mechanical properties of graphene. Rev. Adv. Mater. Sci. 34, 1–11 (2013)

    Google Scholar 

  4. K. Min, N.R. Aluru, Mechanical properties of graphene under shear deformation. Appl. Phys. Lett. 98, 013113 (2011)

    Article  Google Scholar 

  5. T.T. Baby, S. Ramaprabhu, Investigation of thermal and electrical conductivity of graphene based nanofluids. J. Appl. Phys. 108, 124308 (2010)

    Article  Google Scholar 

  6. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  CAS  Google Scholar 

  7. ZSh Wu, W. Ren, L. Gao, B. Liu, Ch. Jiang, H.M. Cheng, Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47, 493–499 (2009)

    Article  CAS  Google Scholar 

  8. C. Riedl, C. Coletti, T. Iwasaki, A.A. Zakharov, U. Starke, Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 103, 246804 (2009)

    Article  CAS  Google Scholar 

  9. S. Santangelo, G. Messina, A. Malara, N. Lisi, T. Dikonimos, A. Capasso, L. Ortolani, V. Morandi, G. Faggio, Taguchi optimized synthesis of graphene films by copper catalyzed ethanol decomposition. Diam. Relat. Mater. 41, 73–74 (2014)

    Article  CAS  Google Scholar 

  10. A. Reina, X. Jia, J. Ho, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009)

    Article  CAS  Google Scholar 

  11. P.W. Sutter, J.I. Flege, E.A. Sutter, Epitaxial graphene on ruthenium. Nat. Mater. 7, 406–411 (2008)

    Article  CAS  Google Scholar 

  12. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S.S. Pei, Graphene segregated on Ni surfaces and transferred to insulator. Appl. Phys. Lett. 93, 113103 (2008)

    Article  Google Scholar 

  13. A. Guermoune, T. Chari, F. Popescu, S.S. Sabri, J. Guillemette, H.S. Skulason, T. Szkopek, M. Siaj, Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol and propanol precursors. Carbon 49, 4204–4210 (2011)

    Article  CAS  Google Scholar 

  14. W. Liu, H. Li, Ch. Xu, Y. Khatami, K. Banerjee, Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 49, 4122–4130 (2011)

    Article  CAS  Google Scholar 

  15. T.F. Chung, T. Shen, H. Cao, L.A. Jauregui, W. Wu, Q. Yu, D. Neweel, Y.P. Chen, Synthetic graphene grown by chemical vapor deposition on copper foils. Int. J. Mod. Phys. B 27, 1341002 (2013)

    Article  Google Scholar 

  16. W. Zhao, S.M. Kozlov, O. Hofert, K. Gotterbarm, M.P.A. Lorenz, F. Vines, C. Papp, A. Gorling, H.P. Steinruck, Graphene on Ni(111): coexistence of different surface structures. Phys. Chem. Lett. 2, 759–764 (2011)

    Article  CAS  Google Scholar 

  17. D.E. Jiang, M.H. Du, Sh. Dai, First principles study of the graphene/Ru(0001) interface. J. Chem. Phys. 130, 074705 (2009)

    Article  Google Scholar 

  18. A. Jafari, R. Alipour, M. Ghoranneviss, The effects of growth time on the quality of graphene synthesized by LPCVD. Bull. Mater. Sci. 38, 707–710 (2015)

    Article  CAS  Google Scholar 

  19. A. Jafari, M. Ghoranneviss, M.R. Hantehzadeh, A. Boochani, Effect of plasma power on growth of multilayer graphene on copper using plasma enhanced chemical vapor deposition. J. Chem. Res. 40, 40–43 (2016)

    Article  CAS  Google Scholar 

  20. Y. Wu, P. Qiao, T. Chong, Z. Shen, Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Adv. Mater. 14, 64–67 (2002)

    Article  CAS  Google Scholar 

  21. Ultrasonic Cleaning System, Operation Manual, Health Sonics, 2260 Wendt. St. Algonquin, IL 60102 USA (2007)

  22. J.H. Kim, E.J.D. Castro, Y.G. Hwang, C.H. Lee, Synthesis of few layer graphene using DC-PECVD. AIP Conf. Proc. 1399, 801–802 (2011)

    Article  CAS  Google Scholar 

  23. A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)

    Article  CAS  Google Scholar 

  24. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  CAS  Google Scholar 

  25. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P.C. Eklund, Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 6, 2667–2673 (2006)

    Article  CAS  Google Scholar 

  26. F. Tuinstra, J.L. Koening, Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970)

    Article  CAS  Google Scholar 

  27. C. Thomsen, S. Reich, Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85, 5214–5217 (2000)

    Article  CAS  Google Scholar 

  28. R. Narula, S. Reich, Double resonant Raman spectra in graphene and graphite: a two-dimensional explanation of the Raman amplitude. Phys. Rev. B 78, 165422 (2008)

    Article  Google Scholar 

  29. P. Venezuela, M. Lazzeri, F. Mauri, Theory of double-resonant Raman spectra in graphene: intensity and line shape of defect-induced and two-phonon bands. Phys. Rev. B 84, 035433 (2011)

    Article  Google Scholar 

  30. M.M. Lucchese, F. Stavale, E.H. Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, A. Jorio, Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597 (2010)

    Article  CAS  Google Scholar 

  31. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000)

    Article  CAS  Google Scholar 

  32. A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64, 075414 (2001)

    Article  Google Scholar 

  33. Gwyddion Software User Guide, Version 2.4 (2015); David Nečas (Yeti) et al., Development is supported by the Czech Metrology Institute. http://www.cmi.cz, http://gwyddion.net

  34. Mountains Map Premium 7.3 (64-bit version) software available from http://www.digitalsurf.fr

  35. ISO 25178-2: Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters (2012). http://www.iso.org

  36. K.L. Johnson, Contact Mechanics. Cambridge University Press, Cambridge (1985), p. 407; ISBN: 0-521-34796-3

  37. G.W. Stachowiak, A.W. Batchelor, Engineering Tribology. Butterworth-Heinemann, Boston (2001), p. 450; ISBN: 0-7506-7304-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Alipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alipour, R., Riazifar, M. & Afsari, T. The effect of pressure on morphological features and quality of synthesized graphene. Res Chem Intermed 42, 8261–8272 (2016). https://doi.org/10.1007/s11164-016-2594-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2594-8

Keywords

Navigation