Skip to main content
Log in

Flower-like silver nanoparticles: an effective and recyclable catalyst for degradation of Rhodamine B with H2O2

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

An experiment seeking to generate silver nanoparticles resulted in the formation of flower-like silver nanoparticles over the surface of Zeolite A. After full characterization of the obtained composite using spectroscopic and microscopic techniques, it was successfully used as an efficient catalyst in the degradation of Rhodamine B in aqueous solution with H2O2 as a green oxidant. It was found that degradation proceeds via a Fenton-like process under mild conditions in a rather short time (60 °C, 90 min). The catalyst was recovered easily and retained its activity for successive runs with no considerable decrease in its efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.P. Perez, Silver Nanoparticles (In-Teh, Vukovar, 2010)

    Google Scholar 

  2. B.S. Atiyeh, M. Costagliola, S.N. Hayek, S.A. Dibo, Burns 33, 2 (2007)

    Article  Google Scholar 

  3. A. Khorshidi, B. Heidari, H. Inanlu, J. Serb. Chem. Soc. 80, 779 (2015)

    Article  CAS  Google Scholar 

  4. B. Tang, M. Zhang, X. Hou, J. Li, L. Sun, X. Wang, Ind. Eng. Chem. Res. 51, 12807 (2012)

    Article  CAS  Google Scholar 

  5. P. Liu, M. Zhao, Appl. Surf. Sci. 255, 3989 (2009)

    Article  CAS  Google Scholar 

  6. K.M.A. El-Nour, A. Eftaiha, A. Al-Warthan, R.A. Ammar, Arab. J. Chem. 3, 135 (2010)

    Article  Google Scholar 

  7. C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001)

    Article  CAS  Google Scholar 

  8. L.J. Sherry, S.-H. Chang, G.C. Schatz, R.P. Van Duyne, B.J. Wiley, Y. Xia, Nano Lett. 5, 2034 (2005)

    Article  CAS  Google Scholar 

  9. L.J. Sherry, R. Jin, C.A. Mirkin, G.C. Schatz, R.P. Van Duyne, Nano Lett. 6, 2060 (2006)

    Article  CAS  Google Scholar 

  10. J.J. Mock, D.R. Smith, S. Schultz, Nano Lett. 3, 485 (2003)

    Article  CAS  Google Scholar 

  11. M. Hu, J. Chen, M. Marquez, Y. Xia, G.V. Hartland, J. Phys. Chem. C 111, 12558 (2007)

    Article  CAS  Google Scholar 

  12. R. Jin, Y. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, J.G. Zheng, Science 294, 1901 (2001)

    Article  CAS  Google Scholar 

  13. C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, J. Phys. Chem. B 109, 13857 (2005)

    Article  CAS  Google Scholar 

  14. Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Angew. Chem. Int. Ed. 48, 60 (2009)

    Article  CAS  Google Scholar 

  15. E. Hao, K.L. Kelly, J.T. Hupp, G.C. Schatz, J. Am. Chem. Soc. 124, 15182 (2002)

    Article  CAS  Google Scholar 

  16. B. Tang, S. Xu, J. An, B. Zhao, W. Xu, J. Phys. Chem. C 113, 7025 (2009)

    Article  CAS  Google Scholar 

  17. R. Jain, M. Mathur, S. Sikarwar, A. Mittal, J. Environ. Manag. 85, 956 (2007)

    Article  CAS  Google Scholar 

  18. D.J. Dire, J.A. Wilkinson, J. Toxicol. Clin. Toxicol. 25, 603 (1987)

    Article  CAS  Google Scholar 

  19. M. Inoue, F. Okada, A. Sakurai, M. Sakakibara, Ultrason. Sonochem. 13, 313 (2006)

    Article  CAS  Google Scholar 

  20. A. Mehrdad, R. Hashemzadeh, Ultrason. Sonochem. 17, 168 (2010)

    Article  CAS  Google Scholar 

  21. T.J. Tiong, G.J. Price, Ultrason. Sonochem. 19, 358 (2012)

    Article  Google Scholar 

  22. R. Chen, C. Yin, H. Liu, Y. Wei, J. Mol. Catal. A Chem. 397, 114 (2015)

    Article  CAS  Google Scholar 

  23. X. Wang, Y. Pan, Z. Zhu, J. Wu, Chemosphere 117, 638 (2014)

    Article  CAS  Google Scholar 

  24. X. Chong, B. Zhao, R. Li, W. Ruan, X. Yang, Colloid Surf. A 481, 7 (2015)

    Article  CAS  Google Scholar 

  25. A. Khorshidi, S. Heidari, RSC Adv. 5, 32804 (2015)

    Article  CAS  Google Scholar 

  26. T.M. Salama, I.O. Ali, A.I. Hanafy, W.M. Al-Meligy, Mater. Chem. Phys. 113, 159 (2009)

    Article  CAS  Google Scholar 

  27. G.S. Métraux, C.A. Mirkin, Adv. Mater. 17, 412 (2005)

    Article  Google Scholar 

  28. C.J. Kirubaharan, D. Kalpana, Y.S. Lee, A.R. Kim, D.J. Yoo, K.S. Nahm, G.G. Kumar, Ind. Eng. Chem. Res. 51, 7441 (2012)

    Article  CAS  Google Scholar 

  29. N. Inchaurrondo, P. Massa, R. Fenoglio, J. Font, P. Haure, Chem. Eng. J. 198, 426 (2012)

    Article  Google Scholar 

  30. H. Fenton, J. Chem. Soc. Trans. 65, 899 (1894)

    Article  CAS  Google Scholar 

  31. C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Environ. Sci. Technol. 22, 798 (1988)

    Article  CAS  Google Scholar 

  32. M.-F. Hou, L. Liao, W.-D. Zhang, X.-Y. Tang, H.-F. Wan, G.-C. Yin, Chemosphere 83, 1279 (2011)

    Article  CAS  Google Scholar 

  33. D. Wan, W. Li, G. Wang, K. Chen, L. Lu, Q. Hu, Appl. Surf. Sci. 349, 988 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Research Council of University of Guilan for the partial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Khorshidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorshidi, A., Mardazad, N. Flower-like silver nanoparticles: an effective and recyclable catalyst for degradation of Rhodamine B with H2O2 . Res Chem Intermed 42, 7551–7558 (2016). https://doi.org/10.1007/s11164-016-2552-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2552-5

Keywords

Navigation