Skip to main content

Advertisement

Log in

TiO2–CeO2 prepared by using pressurized and supercritical fluids: effect of processing parameters and cerium amount on (micro)structural and morphological properties

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Ce x Ti1−x O n composites with different Ti:Ce molar ratios (from 95:05 up to 70:30) were prepared unconventionally, via the sol–gel process controlled within reverse micelles of nonionic surfactant and processing by pressurized hot and supercritical fluids in a flow regime as an alternative to common thermal treatment. Nitrogen physisorption, powder X-ray diffraction (XRD) combined with Rietveld/whole powder pattern modeling (WPPM) and organic elemental analysis (OEA) were used as tools for characterization of the porous structure morphology, structural and microstructural properties, and purity of the prepared composites. All prepared Ce x Ti1−x O n composites possessed well-developed mesoporous structure with minimum portion of micropores, showing specific surface area in the range of 203–256 m2/g. The experimental conditions during pressurized hot and supercritical processing as well as the Ce loading played a key role in crystallization of individual Ce x Ti1−x O n composites. With increasing Ce loading, crystallization of anatase at the expense of brookite was promoted, accompanied with decreasing microstrain in anatase crystallites. The elevated processing temperature (250 °C) led to crystallization of CeO2 cubic beside TiO2 anatase. As a consequence of the different solubility of the used surfactant in pressurized hot and supercritical solvents under pressures of 10 and 30 MPa, cubic CeO2 crystallites of different sizes were formed. This property of CeO2 crystallites crucially affected the recrystallization of Ce0.30Ti0.70O n -S composites at elevated temperatures; small and uniform CeO2 crystallites stabilized the anatase–cerianite phase mixture, giving rise to minor brookite phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H.Q. Zhu, Z.F. Qin, W.J. Shan, W.J. Shen, J.G. Wang, J. Catal. 225, 267 (2004)

    Article  CAS  Google Scholar 

  2. A.K. Sinha, K. Suzuki, J. Phys. Chem. B 109, 1708 (2005)

    Article  CAS  Google Scholar 

  3. S. Ojala et al., Top. Catal. 54, 1224 (2011)

    Article  CAS  Google Scholar 

  4. L. Matějová, P. Topka, K. Jirátová, O. Šolcová, Appl. Catal. A: Gen. 443, 40 (2012)

    Article  Google Scholar 

  5. S. Pitkäaho, L. Matějová, S. Ojala, J. Gaálová, R.L. Keiski, Appl. Catal. B: Environ. 113–114, 150 (2012)

    Article  Google Scholar 

  6. S. Pitkäaho, L. Matějová, K. Jirátová, S. Ojala, R.L. Keiski, Appl. Catal. B: Environ. 126, 215 (2012)

    Article  Google Scholar 

  7. L. Matějová, P. Topka, L. Kaluža, S. Pithaäho, S. Ojala, J. Gaálová, R.L. Keiski, Appl. Catal. B: Environ. 142–143, 54 (2013)

    Article  Google Scholar 

  8. F. Galindo, R. Gomez, M. Aguilar, J. Mol. Catal. A: Chem. 281, 119 (2008)

    Article  CAS  Google Scholar 

  9. V. Štengl, S. Bakardijeva, N. Murafa, Mater. Chem. Phys. 114, 217 (2009)

    Article  Google Scholar 

  10. N. Aman, P.K. Satapathy, T. Mishra, M. Mahato, N.N. Das, Mater. Res. Bull. 47, 179 (2012)

    Article  CAS  Google Scholar 

  11. J. Xiao, T. Peng, R. Li, Z. Peng, JCh. Yan, Solid State Chem. 179, 1161 (2006)

    Article  CAS  Google Scholar 

  12. C. Guzman, G. Del Angel, R. Gomez, F. Galindo Hernandez, C. Angelez Chabez, Catal. Today 166, 146 (2011)

    Article  CAS  Google Scholar 

  13. A.M.T. Silva, C.G. Silva, G. Dražič, J.L. Faria, Catal. Today 144, 13 (2009)

    Article  CAS  Google Scholar 

  14. A. Rapsomanikis, A. Apostolopoulou, E. Stathatos, P. Lianos, J. Photochem. Photobiol. A: Chem. 280, 46 (2014)

    Article  CAS  Google Scholar 

  15. A. Fujishima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63, 515 (2008)

    Article  CAS  Google Scholar 

  16. A.L. Linsebigler, G.Q. Lu, J.T. Yates, Chem. Rev. 95, 735 (1995)

    Article  CAS  Google Scholar 

  17. D.O. Scanlon et al., Nat. Mater. 12, 798 (2013)

    Article  CAS  Google Scholar 

  18. I. Liu, H. Zhao, J.M. Andino, Y. Li, ACS Catal. 2, 1817 (2012)

    Article  CAS  Google Scholar 

  19. T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutterm, M. Batzill, Sci. Rep. 4, 4043 (2014)

    Article  Google Scholar 

  20. P.A. Morris Hotsenpiller, J.D. Bolt, W.E. Farneth, J.B. Lowekamp, G.S. Rohrer, J. Phys. Chem. B 102, 3216 (1998)

    Article  Google Scholar 

  21. T. Ohno, K. Sarukawa, M. Matsumura, New J. Chem. 26, 1167 (2002)

    Article  CAS  Google Scholar 

  22. H.G. Yang et al., Nature 453, 638 (2008)

    Article  CAS  Google Scholar 

  23. L. Ye, J. Liu, L. Tian, T. Peng, L. Zan, Appl. Catal. B: Environ. 134–135, 60 (2013)

    Article  Google Scholar 

  24. J. Pan, G. Liu, G.Q. Lu, H.-M. Cheng, Angew. Chem. Int. Ed. 50, 2133 (2011)

    Article  CAS  Google Scholar 

  25. T. Xia, Y. Zhang, J. Murowchick, X. Chen, Catal. Today 225, 2 (2014)

    Article  CAS  Google Scholar 

  26. W. Wang, Ch-H Lu, Y.-R. Ni, J.-B. Song, M.-X. Su, Z.-Z. Xu, Catal. Commun. 22, 19 (2012)

    Article  CAS  Google Scholar 

  27. I. Justicia, P. Ordejon, G. Canto, J.L. Mozos, A. Figueras, Adv. Mater. 14, 1399 (2002)

    Article  CAS  Google Scholar 

  28. U. Diebold, Surf. Sci. Rep. 48, 53 (2003)

    Article  CAS  Google Scholar 

  29. J.N. Pan, B.L. Maschhoff, U. Diebold, T.E. Madey, J. Vac. Sci. Technol. A 10, 2470 (1998)

    Article  Google Scholar 

  30. M.A. Henderson, W.S. Epling, C.L. Perkins, C.H.F. Peden, U. Diebold, J. Phys. Chem. B 103, 5328 (1999)

    Article  CAS  Google Scholar 

  31. V. Štengl, S. Bakardjieva, N. Murafa, Mater. Chem. Phys. 114, 217 (2009)

    Article  Google Scholar 

  32. G. Li, D. Zhang, J.C. Yu, Phys. Chem. Chem. Phys. 11, 3775 (2009)

    Article  CAS  Google Scholar 

  33. M. Nasir, S. Bagwasi, Y. Jiao, F. Chen, B. Tian, J. Zhang, Chem. Eng. J. 236, 388 (2014)

    Article  CAS  Google Scholar 

  34. L. Matějová, K. Kočí, M. Reli, L. Čapek, A. Hospodková, P. Peikertová, Z. Matěj, L. Obalová, A. Wach, P. Kustrowski, A. Kotarba, Appl. Catal. B: Environ. 152–153, 172 (2014)

    Article  Google Scholar 

  35. S. Kityakarn, A. Worayingyong, A. Suramitr, M.F. Smith, Mater. Chem. Phys. 139, 543 (2013)

    Article  CAS  Google Scholar 

  36. J. Fang, X. Bi, D. Si, Z. Jiang, W. Huang, Appl. Surf. Sci. 253, 8952 (2007)

    Article  CAS  Google Scholar 

  37. D.A.H. Hanaor, C. Sorrell, J. Mater. Sci. 46, 855 (2011)

    Article  CAS  Google Scholar 

  38. L. Matějová, V. Valeš, R. Fajgar, Z. Matěj, V. Holý, O. Šolcová, J. Solid State Chem. 198, 485 (2013)

    Article  Google Scholar 

  39. Y. Liu, P. Fang, Y. Cheng, Y. Gao, F. Chen, Z. Liu, Y. Dai, Chem. Eng. J. 219, 478 (2013)

    Article  CAS  Google Scholar 

  40. T. Masui, K. Fujiwara, K.I. Machida, G.Y. Adachi, T. Sakata, H. Mori, Chem. Mater. 9, 2197 (1997)

    Article  CAS  Google Scholar 

  41. S. Tsunekawa, T. Fukuda, A. Kasuya, J. Appl. Phys. 87, 1318 (2000)

    Article  CAS  Google Scholar 

  42. H.C. Yao, Y.F.Y. Yao, J. Catal. 86, 254 (1984)

    Article  CAS  Google Scholar 

  43. A. Trovarelli, Catal. Rev. 38, 439 (1996)

    Article  CAS  Google Scholar 

  44. J. Kaspar, P. Fornasiero, M. Graziani, Catal. Today 50, 285 (1999)

    Article  CAS  Google Scholar 

  45. L. Matějová, Z. Matěj, R. Fajgar, T. Cajthaml, O. Šolcová, Mater. Res. Bull. 47, 3573 (2012)

    Article  Google Scholar 

  46. S.J. Gregg, K.S.W. Sing, Adsorption. Surface Area and Porosity (Academic, New York, 1982)

    Google Scholar 

  47. P. Schneider, Appl. Catal. A 129, 157 (1995)

    Article  CAS  Google Scholar 

  48. J.B. DeBoer, B.C. Lippens, B.G. Linsen, J.C.P. Broekhoff, A.V.D. Heuvel, T.J. Osinga, J. Colloid Interface Sci. 21, 405 (1966)

    Article  CAS  Google Scholar 

  49. A. Lecloux, J.P. Pirard, J. Colloid Interface Sci. 70, 265 (1979)

    Article  CAS  Google Scholar 

  50. E.P. Barret, L.G. Joyner, P.B. Halenda, J. Am. Chem. Soc. 73, 373 (1951)

    Article  Google Scholar 

  51. NOVAwin Data Processing—Quantachrome Software, Quantachrome, USA

  52. P. Scardi, M. Leoni, Acta Crystallogr. Sect. A: Found. Crystallogr. 58, 190 (2002)

    Article  CAS  Google Scholar 

  53. Z. Matěj, R. Kužel, MStruct-program/library for MicroStructure analysis by powder diffraction. 2009

  54. Z. Matej, R. Kuzel, L. Nichtova, Powder Diffr. 25, 125 (2010)

    Article  CAS  Google Scholar 

  55. Z. Matěj, L. Matějová, R. Kužel, Powder Diffr. 28, 161 (2013)

    Article  Google Scholar 

  56. P. Kluson, H. Luskova, T. Cajthaml, O. Solcova, Thin Solid Films 495, 18 (2006)

    Article  CAS  Google Scholar 

  57. L. Matějová, T. Cajthaml, Z. Matěj, O. Benada, P. Klusoň, O. Šolcová, J. Supercrit. Fluids 52, 215 (2010)

    Article  Google Scholar 

  58. H. Zhang, M. Finnegan, J.F. Banfield, Nano Lett. 1, 81 (2001)

    Article  CAS  Google Scholar 

  59. H. Zhang, J.F. Banfield, J. Phys. Chem. B 104, 3481 (2000)

    Article  CAS  Google Scholar 

  60. R.I. Penn, J.F. Banfield, Am. Miner. 83, 1077 (1998)

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Grant Agency of the Czech Republic (project reg. no. 14-23274S) and the Ministry of Education, Youth, and Sports of the Czech Republic in the “National Feasibility Program I” (project reg. no. LO1208, “TEWEP”) is gratefully acknowledged. The authors also thank Zdeněk Matěj for highly valuable advice concerning XRD data evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Matějová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matějová, L., Brunátová, T. & Daniš, S. TiO2–CeO2 prepared by using pressurized and supercritical fluids: effect of processing parameters and cerium amount on (micro)structural and morphological properties. Res Chem Intermed 41, 9243–9257 (2015). https://doi.org/10.1007/s11164-015-1990-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-1990-9

Keywords

Navigation