Skip to main content
Log in

Artificial photosynthesis by using chloroplasts from spinach adsorbed on a nanocrystalline TiO2 electrode for photovoltaic conversion

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Photovoltaic conversion has been achieved by use of chloroplasts (photosynthetic organs) from spinach adsorbed on a nanocrystalline TiO2 film on an indium tin oxide (ITO) glass electrode (chloroplast/TiO2 electrode). The shape of the absorption spectrum of the chloroplast/TiO2 electrode is almost the same that of a dispersion of the chloroplasts. Absorption maxima of the chloroplast/TiO2 electrode observed at 430, 475, and 670 nm were attributed to carotenoid and chlorophyll molecules, suggesting that chloroplasts have been adsorbed by the nanocrystalline TiO2 film on the ITO electrode. The photocurrent responses of chloroplast/TiO2 electrodes were measured by using a solution of 0.1 M tetrabutylammonium hexafluorophosphate in acetonitrile as redox electrolyte in the presence or absence of water and 100 mW cm−2 irradiation. The photocurrent of the chloroplast/TiO2 electrode was increased by adding water to the redox electrolyte. The photocurrent responses of chloroplast/TiO2 electrodes irradiated with monochromatic light (680 nm, the absorption band of photosystem II complexed with evolved oxygen) were measured by use of a solution of 0.1 M tetrabutylammonium hexafluorophosphate in acetonitrile as redox electrolyte in the presence or absence of water. A chloroplast/TiO2 electrode photocurrent was observed only when the redox electrolyte containing water was used, indicating that the oxygen evolved from water by photosystem II in chloroplasts adsorbed by a nanocrystalline TiO2 film on an ITO electrode irradiated at 680 nm is reduced to water by the catalytic activity of the platinum electrode. The maximum incident photon-to-current conversion efficiency (IPCE) was 0.8 % on irradiation at 670 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.R. Ort, C.F. Yocum, Advances in photosynthesis (Kluwer Academic Publishers, Dordrecht, 1996)

    Google Scholar 

  2. K. Sauer, V.K. Yachandra, Biochim. Biophys. Acta 1655, 140 (2004)

    Article  CAS  Google Scholar 

  3. B. Loll, J. Kern, W. Saenger, A. Zouni, J. Biesiadka, Nature 438, 1040 (2005)

    Article  CAS  Google Scholar 

  4. Y. Taguchi, T. Noguchi, Biochim. Biophys. Acta 1767, 535 (2007)

    Article  CAS  Google Scholar 

  5. M. Nagata, M. Nango, A. Kashiwada, S. Yamada, S. Ito, N. Sawa, M. Ogawa, K. Iida, Y. Kuronoa, T. Ohtsuka, Chem. Lett. 32, 216 (2003)

    Article  CAS  Google Scholar 

  6. M. Ogawa, R. Kanda, T. Dewa, K. Iida, M. Nango, Chem. Lett. 31, 466 (2002)

    Article  Google Scholar 

  7. M. Nango, A. Kashiwada, H. Watanabe, S. Yamada, M. Ogawa, T. Tanaka, K. Iida, Chem. Lett. 31, 312 (2002)

    Article  Google Scholar 

  8. Y. Amao, Y. Yamada, K. Aoki, J. Photochem. Photobiol. A: Chem. 164, 47 (2004)

    Article  CAS  Google Scholar 

  9. Y. Amao, T. Komori, Biosens. Bioelectron. 19, 843 (2004)

    Article  CAS  Google Scholar 

  10. P.V. Kamat, J.P. Chauvet, R.W. Fessenden, J. Phys. Chem. 90, 1389 (1986)

    Article  CAS  Google Scholar 

  11. A. Kay, M. Grätzel, J. Phys. Chem. 97, 6272 (1993)

    Article  CAS  Google Scholar 

  12. A. Kay, R. Humphry-Baker, M. Grätzel, J. Phys. Chem. 98, 952 (1994)

    Article  CAS  Google Scholar 

  13. B.A. Kiselev, N.-Y. Kozlo, Biochem. Bioenerg. 7, 247 (1980)

    Article  CAS  Google Scholar 

  14. L.A. Khanova, M.R. Tarasevich, J. Electroanal. Chem. 227, 115 (1987)

    Article  CAS  Google Scholar 

  15. Y. Amao, Y. Yamada, Langmuir 21, 3008 (2005)

    Article  CAS  Google Scholar 

  16. M. Grätzel, Nature 414, 338 (1991)

    Article  Google Scholar 

  17. A. Hagfeldt, M. Grätzel, Acc. Chem. Res. 33, 269 (2000)

    Article  CAS  Google Scholar 

  18. K. Sayama, H. Sugihara, H. Arakawa, Chem. Mater. 10, 3825 (1998)

    Article  CAS  Google Scholar 

  19. M. Nagata, M. Amano, T. Joke, K. Fujii, A. Okuda, M. Kondo, S. Ishigure, T. Dewa, K. Iida, F. Secundo, Y. Amao, H. Hashimoto, M. Nango, ACS Macro Lett. 1, 296 (2012)

    Article  CAS  Google Scholar 

  20. Y. Amao, A. Kuroki, Electrochemistry 77, 862 (2009)

    Article  CAS  Google Scholar 

  21. H.-E. Åkerlund, B. Andersson, P.-Å. Albertsson, Biochim. Biophys. Acta 449, 525 (1976)

    Article  Google Scholar 

  22. S. Nakade, S. Kambe, T. Kitamura, Y. Wada, S. Yanagida, J. Phys. Chem. B. 105, 9150 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Precursory Research for Embryonic Science and Technology (PRESTO, Japan Science and Technology Agency, JST), Grants-in-Aid for Scientific Research (C) (Japan Society for the Promotion of Science) (23560947), and Grant-in-Aid for Scientific Research on Innovative Areas “Artificial Photosynthesis (2406)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Amao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amao, Y., Tadokoro, A., Nakamura, M. et al. Artificial photosynthesis by using chloroplasts from spinach adsorbed on a nanocrystalline TiO2 electrode for photovoltaic conversion. Res Chem Intermed 40, 3257–3265 (2014). https://doi.org/10.1007/s11164-014-1831-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1831-2

Keywords

Navigation