Skip to main content

Advertisement

Log in

Kinetic modeling for phenol degradation using photo-impinging streams reactor

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In the present study, a novel kinetic model has been proposed for photocatalytic degradation of wastewater. In the first step, statistical experimental designs have been used to optimize the process of phenol degradation in a photo-impinging streams reactor. The crucial parameters, namely phenol concentration, catalyst loading, pH, and slurry flow rate, were selected for process optimization, applying central composite design. The analysis results indicated that interactions between catalyst loading and pH significantly affect phenol degradation. The predicted data showed that the maximum removal efficiency of phenol (99 %) could be obtained under the optimum operating conditions (phenol concentration = 50 mg l−1, catalyst loading = 2.1 g l−1, pH 6.2, and slurry flow rate = 550 ml min−1). These predicted values were then verified by certain validating experiments. Residence time distribution (RTD) of the slurry phase within the reactor was then measured using the impulse tracer method. A number of different assumptions were made, i.e., continuous stirred tank reactors (CSTRs) in series model and gamma distribution model with bypass (GDB). A comparison made between the sum of the square errors for experimental and predicted RTD values in case of each flow model revealed that both CSTRs in series model and GDB were proper descriptions for reactor behavior. The CSTRs in series model and RTD data were applied in conjunction with the phenol degradation kinetic model to predict the coefficients of the reaction rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Shahrezaei, Y. Mansouri, A.A.L. Zinatizadeh, A. Akhbari, Powder Technol. 221, 203–212 (2012)

    Article  CAS  Google Scholar 

  2. K. Elghniji, O. Hentati, N. Mlaik, A. Mahfoudh, M. Ksibi, J. Environ. Sci. 24, 479–487 (2012)

    Article  CAS  Google Scholar 

  3. M. Subramanian, A. Kannan, Chem. Eng. Sci. 65, 2727–2740 (2010)

    Article  CAS  Google Scholar 

  4. S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, J. Environ. Manag. 92, 311–330 (2011)

    Article  CAS  Google Scholar 

  5. D. Vildozo, C. Ferronato, M. Sleiman, J.-M. Chovelon, Appl. Catal. B 94, 303–310 (2010)

    Article  CAS  Google Scholar 

  6. M. Padervand, H. Salari, S. Ahmadvand, M. Gholami, Res. Chem. Intermed. 38, 1975–1985 (2012)

    Article  CAS  Google Scholar 

  7. T. Van Gerven, G. Mul, J. Moulijn, A. Stankiewicz, Chem. Eng. Process. 46, 781–789 (2007)

    Article  Google Scholar 

  8. S.J. Royaee, M. Sohrabi, F. Soleymani, J. Chem. Technol. Biotechnol. 86, 205–212 (2011)

    Article  CAS  Google Scholar 

  9. S.J. Royaee, M. Sohrabi, Ind. Eng. Chem. Res. 51, 4152–4160 (2012)

    Article  CAS  Google Scholar 

  10. S. Ray, J.A. Lalman, N. Biswas, Chem. Eng. J. 150, 15–24 (2009)

    Article  CAS  Google Scholar 

  11. C.G. Silva, J.L. Faria, J. Mol. Catal. A 305, 147–154 (2009)

    Article  CAS  Google Scholar 

  12. C.-H. Chiou, C.-Y. Wu, R.-S. Juang, Chem. Eng. J. 139, 322–329 (2008)

    Article  CAS  Google Scholar 

  13. S.N. Hosseini, S.M. Borghei, M. Vossoughi, N. Taghavinia, Appl. Catal. B 74, 53–62 (2007)

    Article  CAS  Google Scholar 

  14. M. Fathinia, A.R. Khataee, J. Ind. Eng. Chem. 19, 1525–1534 (2013)

    Article  CAS  Google Scholar 

  15. W. Wibel, A. Wenka, J.J. Brandner, R. Dittmeyer, Chem. Eng. J. 227, 203–214 (2013)

    Article  CAS  Google Scholar 

  16. L. Ji, B. Wu, K. Chen, J. Zhu, J. Ind. Eng. Chem. 16, 646–650 (2010)

    Article  CAS  Google Scholar 

  17. N. Fatourehchi, M. Sohrabi, B. Dabir, S.J. Royaee, A. Haji Malayeri, Enzyme Microb. Technol. 55, 14–20 (2014)

    Article  CAS  Google Scholar 

  18. G. Charles, T. Roques-Carmes, N. Becheikh, L. Falk, J.-M. Commenge, S. Corbel, J. Photochem. Photobiol. A 223, 202–211 (2011)

    Article  CAS  Google Scholar 

  19. S. Basha, D. Keane, A. Morrissey, K. Nolan, M. Oelgemöller, J. Tobin, Ind. Eng. Chem. Res. 49, 11302–11309 (2010)

    Article  CAS  Google Scholar 

  20. A.I. Khuri, J.A. Cornell, Response Surfaces: Designs and Analyses, 2nd edn. (Taylor and Francis, New York, 1996)

    Google Scholar 

  21. D.C. Montgomery, Design and Analysis of Experiments (Wiley, New York, 2008)

    Google Scholar 

  22. N. Djafarzadeh, M. Zarei, B. Behjati, A.R. Khataee, Res. Chem. Intermed. 39, 3355–3369 (2013)

    Article  CAS  Google Scholar 

  23. A. Olad, R. Nosrati, Res. Chem. Intermed. 1–13 (2013). doi:10.1007/s11164-013-1278-x

  24. M. Litter, in Environmental Photochemistry Part II, ed. by P. Boule, D.W. Bahnemann, P.K.J. Robertson (Springer, Berlin, 2005), pp. 325–366

    Chapter  Google Scholar 

  25. A. Ortiz-Gomez, B. Serrano-Rosales, M. Salaices, H. de Lasa, Ind. Eng. Chem. Res. 46, 7394–7409 (2007)

    Article  CAS  Google Scholar 

  26. A. Sobczyński, Ł. Duczmal, W. Zmudziński, J. Mol. Catal. A 213, 225–230 (2004)

    Article  Google Scholar 

  27. K. Pujara, S.P. Kamble, V.G. Pangarkar, Ind. Eng. Chem. Res. 46, 4257–4264 (2007)

    Article  CAS  Google Scholar 

  28. A. Tamir, Impinging-Stream Reactors: Fundamentals and Applications (Elsevier, Amsterdam, 1994)

    Google Scholar 

  29. Y. Wang, M.B. Sanly, G. Leslie, Desalination 236, 120–126 (2009)

    Article  CAS  Google Scholar 

  30. O. Levenspiel, Chemical Reaction Engineering (Wiley, New York, 1999)

    Google Scholar 

  31. A.K. Coker, Modeling of Chemical Kinetics and Reactor Design (Elsevier Science, Amsterdam, 2001)

    Google Scholar 

  32. M. Sohrabi, M.A. Marvast, Ind. Eng. Chem. Res. 39, 1903–1910 (2000)

    Article  CAS  Google Scholar 

  33. G. Vincent, A. Queffeulou, P.M. Marquaire, O. Zahraa, J. Photochem. Photobiol. A 191, 42–50 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Eng. M. Rezaei for his helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed Javid Royaee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Royaee, S.J., Sohrabi, M. & Jafarikojour, M. Kinetic modeling for phenol degradation using photo-impinging streams reactor. Res Chem Intermed 41, 6409–6431 (2015). https://doi.org/10.1007/s11164-014-1750-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1750-2

Keywords

Navigation