Skip to main content

Advertisement

Log in

Synthesis and optimization of a new calcium phosphate ceramic using a design of experiments

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The main objective of this work is to understand the effects caused by particle size, temperature, and sintering time on ceramic formation and development of its surface hardness (Vickers hardness Vk) in order to extend its use in medical applications. The ceramic consists of a biphasic calcium phosphates mixture (beta-tricalcium phosphate and hydroxylapatite) to which we have added zinc oxide, silica, and zirconia in order to improve the biological and mechanical profiles of this ceramic. The ceramization process is made by partial melting, which the melt agent is an amorphous aluminum phosphate added by small quantities to the last mixture. In fact, when the aluminum phosphate is under high temperature, it causes the formation of a melt which facilitates the adhesion of particles during the solidification process. In this study, we adopted an experimental strategy such as central composite design. This plan lets us optimize the mechanical hardness of the ceramic, involving a polynomial form derived from the Taylor–Mac Lorrain equation. The isoresponses curves obtained give us the estimated responses and empirical possibilities for obtaining ceramics with an optimum hardness, which can then be used for each type or intervention place in reconstructive surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Miao, Y. Hu, J. Liu, A.P. Wong, Mater. Lett. 58, 397 (2004)

    Article  CAS  Google Scholar 

  2. A. Piattelli, A. Scarano, C. Manganot, Biomoterials 17, 1767 (1996)

    Article  CAS  Google Scholar 

  3. G. Daculsi, R.Z. LeGeros, E. Nery, K. Lynch, B. Kerebel, J. Biomed. Mater. Res. 23, 883 (1989)

    Article  CAS  Google Scholar 

  4. E.B. Nery, R.Z. LeGeros, K.L. Lynch, K. Lee, Periodontology 63, 729 (1992)

    Article  CAS  Google Scholar 

  5. H. Yuan, C.A. van Blitterswijk, K. de Groot, J.D. de Bruijn, J. Biomed. Mater. Res. A 78, 139 (2006)

    CAS  Google Scholar 

  6. P. Habibovic, T.M. Sees, M.A. van den Doel, C.A. van Blitterswijk, K. de Groot, J. Biomed. Mater. Res. A 77, 747 (2006)

    Google Scholar 

  7. H. Yuan, M. Van Den Doel, S. Li, C.A. Van Blitterswijk, K. De Groot, J.D. De Bruijn, J. Mater. Sci. Mater. Med. 13, 1271 (2002)

    Article  CAS  Google Scholar 

  8. P. Habibovic, C.M. van der Valk, C.A. van Blitterswijk, K. De Groot, G. Meijer, J. Mater. Sci. Mater. Med. 15, 373 (2004)

    Article  CAS  Google Scholar 

  9. D. Le Nihouannen, A. Saffarzadeh, O. Gauthier, F. Moreau, P. Pilet, R. Spaethe, P. Layrolle, G. Daculsi, J. Mater. Sci. Mater. Med. 19, 667 (2008)

    Article  CAS  Google Scholar 

  10. L.L. Hench, Am. Ceram. Soc. Bull. 72, 93 (1993)

    CAS  Google Scholar 

  11. F.J. Shackelford, Advanced Ceramics, vol 1. Bioceramics edition (Taylor & Francis, 2005)

  12. J.F. Shackelford, Introduction to materials science for engineers, 4th edn. (Prentice Hall, Upper Saddle River, New Jersey, 1996)

    Google Scholar 

  13. T.K. Gupta, F.F. Lange, J.H. Bechtold, J. Mater. Sci. 13, 1464 (1978)

    Article  CAS  Google Scholar 

  14. B. Calès, Y. Stefani, Yttria-stabilized zirconia for improved orthopedic prostheses, in Encyclopedic handbook of biomaterials and bioengineering part B, vol. 1, ed. by D.L. Wise, D.J. Trantolo, D.E. Altobelli, M.J. Yaszemski, J.D. Gresser, E.R. Schwartz (Marcel Deker, New York, 1995), pp. 415–452

    Google Scholar 

  15. B. Cales, Zirconia as a sliding material: Histologic, laboratory, and clinical data. Clin. Orthop. Relat. Res. 379, 94 (2000)

    Google Scholar 

  16. K. Anusavice, Dental ceramics In: Phillips’ Science of dental ceramics. 11th edn. (Saunders, St. Louis, 2003)

  17. W. O’Brien, Dental materials and their selection, 3rd edn. (Quintessence, Chicago, 2002)

    Google Scholar 

  18. B.M. Blatz, A. Sadan, V. Devaud, M. Pasciutta, Quintessence Dental Techn. 28 (2005)

  19. M.B. Blatz, Quintessence Int. 33, 415 (2002)

    Google Scholar 

  20. J. McLean, The Science and Art of Dental Ceramics. Volume I: The Nature of Dental Ceramics and Their Clinical Use. (Quintessence, Chicago, 1979)

  21. M. Jabri, E. Mejdoubi, M. Elgadi, N. Ghabbour, A. Asehraou, B. Hammouti, J. Mater. Environ. Sci. 1, 52 (2010)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Hammouti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jabri, M., Mejdoubi, E., El Gadi, M. et al. Synthesis and optimization of a new calcium phosphate ceramic using a design of experiments. Res Chem Intermed 39, 659–669 (2013). https://doi.org/10.1007/s11164-012-0587-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0587-9

Keywords

Navigation