Skip to main content
Log in

Fish traits as an alternative tool for the assessment of impacted rivers

  • Reviews
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

The current scenario of worldwide exponential increase in river impoundment (dams) and the compounded effects of climate change are among the most important threats to freshwater ecosystems. The sharp decline in the biodiversity of impacted rivers demands the enhancement of available tools for biomonitoring and improved approaches for informing environmental decision-making. Here, we demonstrate examples of how fish trait analyses could be used to assess and predict the response of fish communities to damming and how this approach has potential advantages over traditionally used methods by linking suites of traits to stressor effects through plausible cause and effect mechanisms. Using a trait-based analysis is advantageous as it transcends taxonomy, can be applied across broad spatial scales and be easily integrated into current assessment programs. Therefore, it is a promising tool for biomonitoring in freshwater ecosystems. However, some challenges remain in the application of this approach namely the lack of universality of trait-habitat links; the availability, consistency, and applicability of existing trait data; low discriminatory power and poor mechanistic understanding. Nonetheless adaptive river management can benefit from this approach by sustainably operating dams in the light of knowledge on how the functional structure of fish communities are altered, thus enabling essential habitats for fish to be maintained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aarts BGW, Van Den Brink FWB, Nienhuis PH (2004) Habitat loss as the main cause of the slow recovery of fish faunas of regulated large rivers in Europe: the transversal floodplain gradient. River Res Appl 20:3–23. doi:10.1002/rra.720

    Article  Google Scholar 

  • Agostinho AA, Gomes LC, Veríssimo S, Okada EK (2004) Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Rev Fish Biol Fish 14:11–19

    Article  Google Scholar 

  • Agostinho AA, Pelicice FM, Gomes LC (2008) Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Braz J Biol 68:1119–1132

    Article  CAS  PubMed  Google Scholar 

  • Alcamo J, Flörke M, Märker M (2007) Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol Sci J 52:247–275. doi:10.1623/hysj.52.2.247

    Article  Google Scholar 

  • Angilletta MJ, Ashley Steel E, Bartz KK et al (2008) Big dams and salmon evolution: changes in thermal regimes and their potential evolutionary consequences. Evol Appl 1:286–299. doi:10.1111/j.1752-4571.2008.00032.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbour MT, Gerritsen J, Snyder BD, Stribling JB (1999) Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, 2nd edn. US Environmental Protection Agency; Office of Water, Washington

    Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. Technical paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva, 210 p

  • Baumgartner LJ, Conallin J, Wooden I et al (2014) Using flow guilds of freshwater fish in an adaptive management framework to simplify environmental flow delivery for semi-arid riverine systems. Fish Fish 15:410–427

    Article  Google Scholar 

  • Bender EA, Case TJ, Gilpin ME (1984) Perturbation experiments in community ecology: theory and practice. Ecology 65:1. doi:10.2307/1939452

    Article  Google Scholar 

  • Bunn SE, Arthington AH (2002) Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ Manage 30:492–507

    Article  PubMed  Google Scholar 

  • Chu C, Mandrak NE, Minns CK (2005) Potential impacts of climate change on the distributions of several common and rare freshwater fishes in Canada. Divers Distrib 11:299–310. doi:10.1111/j.1366-9516.2005.00153.x

    Article  Google Scholar 

  • Craven SW, Peterson JT, Freeman MC et al (2010) Modeling the relations between flow regime components, species traits, and spawning success of fishes in warm water streams. Environ Manage 46:181–194. doi:10.1007/s00267-010-9511-5

    Article  PubMed  Google Scholar 

  • Culp JM, Armanini DG, Dunbar MJ et al (2011) Incorporating traits in aquatic biomonitoring to enhance causal diagnosis and prediction. Integr Environ Assess Manag 7:187–197. doi:10.1002/ieam.128

    Article  PubMed  Google Scholar 

  • Cunjak RA (1996) Winter habitat of selected stream fishes and potential impacts from land-use activity. Can J Fish Aquat Sci 53:267–282

    Article  Google Scholar 

  • Daufresne M, Boët P (2007) Climate change impacts on structure and diversity of fish communities in rivers. Glob Chang Biol 13:2467–2478. doi:10.1111/j.1365-2486.2007.01449.x

    Article  Google Scholar 

  • Daufresne M, Roger MC, Capra H, Lamouroux N (2004) Long-term changes within the invertebrate and fish communities of the Upper Rhone River: effects of climatic factors. Glob Chang Biol 10:124–140. doi:10.1046/j.1529-8817.2003.00720.x

    Article  Google Scholar 

  • de Carvalho Freitas CE, Rivas AAF, Campos CP, Sant’Ana I, Kahn JR (2012) The potential impacts of global climatic changes and dams on Amazonian fish and their fisheries, chap 5. In: Türker H (ed) New advances and contributions to fish biology. InTech Rijeka, Croatia

    Google Scholar 

  • Doledec S, Statzner B, Bournard M (1999) Species traits for future biomonitoring across ecoregions: patterns along a human-impacted river. Freshw Biol 42:737–758. doi:10.1046/j.1365-2427.1999.00509.x

    Article  Google Scholar 

  • Dornelas M, Gotelli NJ, McGill B et al (2014) Assemblage time series reveal biodiversity change but not systematic loss. Science 344:296–299. doi:10.1126/science.1248484

    Article  CAS  PubMed  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 81:163–182. doi:10.1017/S1464793105006950

    Article  PubMed  Google Scholar 

  • Ferrier RC, Jenkins A (2009) Handbook of catchment management. Wiley, Oxford

    Book  Google Scholar 

  • Ficke AD, Myrick CA, Hansen LJ (2007) Potential impacts of global climate change on freshwater fisheries. Rev Fish Biol Fish 17:581–613. doi:10.1007/s11160-007-9059-5

    Article  Google Scholar 

  • Gandini CV, Sampaio FAC, Pompeu PS (2014) Hydropeaking effects of on the diet of a Neotropical fish community. Neotrop Ichthyol 12:795–802

    Article  Google Scholar 

  • García-Berthou E (2007) The characteristics of invasive fishes: what has been learned so far? J Fish Biol 71:33–55. doi:10.1111/j.1095-8649.2007.01668.x

    Article  Google Scholar 

  • Gayraud S, Statzner B, Bady P et al (2003) Invertebrate traits for the biomonitoring of large European rivers: an initial assessment of alternative metrics. Freshw Biol 48:2045–2064. doi:10.1046/j.1365-2427.2003.01139.x

    Article  Google Scholar 

  • Goldstein RM, Meador MR (2005) Multilevel assessment of fish species traits to evaluate habitat degradation in streams of the upper midwest. North Am J Fish Manag 25:180–194. doi:10.1577/M04-042.1

    Article  Google Scholar 

  • Hamilton AT, Barbour MT, Bierwagen BG (2010) Implications of global change for the maintenance of water quality and ecological integrity in the context of current water laws and environmental policies. Hydrobiologia 657:263–278. doi:10.1007/s10750-010-0316-6

    Article  Google Scholar 

  • Hargrave CW (2009) Effects of fish species richness and assemblage composition on stream ecosystem function. Ecol Freshw Fish 18:24–32. doi:10.1111/j.1600-0633.2008.00318.x

    Article  Google Scholar 

  • Helfman G, Collette BB, Facey DE, Bowen BW (2009) The diversity of fishes: biology, evolution, and ecology. West Sussex, Wiley-Blackwell 720 p

    Google Scholar 

  • Henle K, Davies KF, Kleyer M et al (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251. doi:10.1023/B:BIOC.0000004319.91643.9e

    Article  Google Scholar 

  • Hoeinghaus DJ, Winemiller KO, Birnbaum JS (2007) Local and regional determinants of stream fish assemblage structure: inferences based on taxonomic versus functional groups. J Biogeogr 34:324–338. doi:10.1111/j.1365-2699.2006.01587.x

    Article  Google Scholar 

  • Humphries P, Baldwin DS (2003) Drought and aquatic ecosystems: an introduction. Freshw Biol 48:1141–1146. doi:10.1046/j.1365-2427.2003.01092.x

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Cambridge University Press, Cambridge, p 996

  • King J, Cambray JA, Impson ND (1998) Linked effects of dam-released floods and water temperature on spawning of the Clanwilliam yellowfish Barbus capensis. Hydrobiologia 384:245–265. doi:10.1023/A:1003481524320

    Article  Google Scholar 

  • Kingsford RT, Biggs HC, Pollard SR (2011) Strategic adaptive management in freshwater protected areas and their rivers. Biol Conserv 144:1194–1203. doi:10.1016/j.biocon.2010.09.022

    Article  Google Scholar 

  • Kundzewicz ZW, Mata LJ, Arnell NW et al (2007) Freshwater resources and their management. In: Parry ML, Canziani OF, Palutikof JP et al (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 173–210

    Google Scholar 

  • Lake P (2000) Disturbance, patchiness, and diversity in streams. J North Am Benthol Soc 19:573–592

    Article  Google Scholar 

  • Lamouroux N, Poff NLR, Angermeier PL (2002) Intercontinental convergence of stream fish community traits along geomorphic and hydraulic gradients. Ecology 83:1792–1807

    Article  Google Scholar 

  • Liermann CR, Nilsson C, Robertson J, Ng RY (2012) Implications of dam obstruction for global freshwater fish diversity. Bioscience 62:539–548. doi:10.1525/bio.2012.62.6.5

    Article  Google Scholar 

  • McManamay RA, Bevelhimer MS, Frimpong EA (2015) Associations among hydrologic classifications and fish traits to support environmental flow standards. Ecohydrology 8:460–479. doi:10.1002/eco.1517

    Article  Google Scholar 

  • Menezes S, Baird DJ, Soares AMVM (2010) Beyond taxonomy: a review of macro invertebrate trait-based community descriptors as tools for freshwater biomonitoring. J Appl Ecol 47:711–719. doi:10.1111/j.1365-2664.2010.01819.x

    Article  Google Scholar 

  • Milly PCD, Betancourt J, Falkenmark M et al (2008) Climate change. Stationarity is dead: whither water management? Science 319:573–574. doi:10.1126/science.1151915

    Article  CAS  PubMed  Google Scholar 

  • Mims MC, Olden JD (2012) Life history theory predicts fish assemblage response to hydrologic regimes. Ecology 93:35–45. doi:10.1890/11-0370.1

    Article  PubMed  Google Scholar 

  • Mims MC, Olden JD (2013) Fish assemblages respond to altered flow regimes via ecological filtering of life history strategies. Freshw Biol 58:50–62. doi:10.1111/fwb.12037

    Article  Google Scholar 

  • Moss B, Hering D, Green AJ et al (2009) Climate change and the future of freshwater biodiversity in Europe: a primer for policy-makers. Freshw Rev 2:103–130. doi:10.1608/FRJ-2.2.1

    Article  Google Scholar 

  • Mouchet MA, Burns MDM, Garcia AM et al (2013) Invariant scaling relationship between functional dissimilarity and co-occurrence in fish assemblages of the Patos Lagoon estuary (Brazil): environmental filtering consistently overshadows competitive exclusion. Oikos 122:247–257. doi:10.1111/j.1600-0706.2012.20411.x

    Article  Google Scholar 

  • Mouillot D, Stubbs W, Faure M et al (2005) Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. Oecologia 145:345–353

    Article  PubMed  Google Scholar 

  • Nelson JS (1994) Fishes of the world. John Wiley and Sons, New York

    Google Scholar 

  • Nilsson C, Berggren K (2000) Alterations of riparian ecosystems caused by river regulation. Bioscience 50:783. doi:10.1641/0006-3568(2000)050[0783:AORECB]2.0.CO;2

    Article  Google Scholar 

  • Nilsson C, Reidy C, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world’s large river systems. Science 308:405–408

    Article  CAS  PubMed  Google Scholar 

  • Olden JD, Naiman RJ (2010) Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshw Biol 55:86–107. doi:10.1111/j.1365-2427.2009.02179.x

    Article  Google Scholar 

  • Olden JD, Poff NL, Bestgen KR (2006) Life-history strategies predict fish invasions and extirpations in the Colorado River Basin. Ecol Monogr 76:25–40

    Article  Google Scholar 

  • Palmer MA, Lettenmaier DP, Poff NL et al (2009) Climate change and river ecosystems: protection and adaptation options. Environ Manage 44:1053–1068. doi:10.1007/s00267-009-9329-1

    Article  PubMed  Google Scholar 

  • Pelicice FM, Pompeu PS, Agostinho AA (2014) Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish Fish 16:697–715. doi:10.1111/faf.12089

    Article  Google Scholar 

  • Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758. doi:10.1111/j.1461-0248.2006.00924.x

    Article  PubMed  Google Scholar 

  • Poff NL, Allan JD (1995) Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 76:606. doi:10.2307/1941217

    Article  Google Scholar 

  • Poff NL, Ward JV (1990) Physical habitat template of lotic systems: recovery in the context of historical pattern of spatiotemporal heterogeneity. Environ Manage 14:629–645. doi:10.1007/BF02394714

    Article  Google Scholar 

  • Poff NL, Zimmerman JKH (2010) Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshw Biol 55:194–205. doi:10.1111/j.1365-2427.2009.02272.x

    Article  Google Scholar 

  • Poff NL, Allan JD, Bain MB et al (1997) The natural flow regime. Bioscience 47:769–784

    Article  Google Scholar 

  • Poff NL, Olden JD, Merritt DM, Pepin DM (2007) Homogenization of regional river dynamics by dams and global biodiversity implications. Proc Natl Acad Sci USA 104:5732–5737. doi:10.1073/pnas.0609812104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pont D, Hugueny B, Beier U et al (2006) Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages. J Appl Ecol 43:70–80

    Article  Google Scholar 

  • Prowse TD, Beltaos S, Gardner JT et al (2006a) Climate change, flow regulation and land-use effects on the hydrology of the Peace-Athabasca-Slave System; findings from the Northern Rivers Ecosystem Initiative. Environ Monit Assess 113:167–197. doi:10.1007/s10661-005-9080-x

    Article  CAS  PubMed  Google Scholar 

  • Prowse TD, Wrona FJ, Reist JD et al (2006b) Climate change effects on hydroecology of arctic freshwater ecosystems. Ambio 35:347–358

    Article  CAS  PubMed  Google Scholar 

  • Prowse TD, Furgal C, Wrona FJ, Reist JD (2009) Implications of climate change for Northern Canada: freshwater, marine, and terrestrial ecosystems. AMBIO J Hum Environ 38:282–289. doi:10.1579/0044-7447-38.5.282

    Article  Google Scholar 

  • Prowse T, Alfredsen K, Beltaos S et al (2012) Effects of changes in arctic lake and river ice. Ambio 40:63–74. doi:10.1007/s13280-011-0217-6

    Article  PubMed Central  Google Scholar 

  • Pyron M, Beugly J (2011) Long-term fish assemblages of inner bends in a large river. River Res Appl 692:684–692. doi:10.1002/rra

    Article  Google Scholar 

  • Richter BD, Warner AT, Meyer JL, Lutz K (2006) A collaborative and adaptive process for developing environmental flow recommendations. River Res Appl 22:297–318. doi:10.1002/rra.892

    Article  Google Scholar 

  • Schindler DW (2001) The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Can J Fish Aquat Sci 58:18–29. doi:10.1139/cjfas-58-1-18

    Article  Google Scholar 

  • Schindler DE, Scheuerell MD, Moore JW et al (2003) Pacific salmon and the ecology of coastal ecosystems. Front Ecol Environ 1:31–37. doi:10.1890/1540-9295(2003)001[0031:PSATEO]2.0.CO;2

    Article  Google Scholar 

  • Southwood TRE (1977) Habitat, the template for ecological strategies? J Anim Ecol 46:337–365

    Article  Google Scholar 

  • Statzner B, Hildrew AG, Resh VH (2001) Species traits and environmental constraints: entomological research and the history of ecological theory. Annu Rev Entomol 46:291–316. doi:10.1146/annurev.ento.46.1.291

    Article  CAS  PubMed  Google Scholar 

  • Townsend C, Hildrew G (1994) Species traits in relation to a habitat templet for river systems. Freshw Biol 265–275

  • Van Looy K, Piffady J, Cavillon C et al (2014) Integrated modelling of functional and structural connectivity of river corridors for European otter recovery. Ecol Model 273:228–235

    Article  Google Scholar 

  • Verberk WCEP, van Noordwijk CGE, Hildrew AG (2013) Delivering on a promise: integrating species traits to transform descriptive community ecology into a predictive science. Freshw Sci 32:531–547. doi:10.1899/12-092.1

    Article  Google Scholar 

  • Vorosmarty CJ (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284–288. doi:10.1126/science.289.5477.284

    Article  CAS  PubMed  Google Scholar 

  • Walters C (1997) Challenges in adaptive management of riparian and coastal ecosystems. Conserv Ecol. http://www.ecologyandsociety.org/vol1/iss2/art1/. Accessed 5 Jun 2015

  • Webb AJ, Miller KA, King EL et al (2013) Squeezing the most out of existing literature: a systematic re-analysis of published evidence on ecological responses to altered flows. Freshw Biol 58:2439–2451. doi:10.1111/fwb.12234

    Article  Google Scholar 

  • Winemiller KO (2005) Life history strategies, population regulation, and implications for fisheries management. Can J Fish Aquat 62:872–885. doi:10.1139/F05-040

    Article  Google Scholar 

  • Winemiller KO, Rose KA (1992) Patterns of life-history diversification in North American fishes: implications for population regulation. Can J Fish Aquat Sci 49:2196–2218

    Article  Google Scholar 

  • Wohl E (2012) Identifying and mitigating dam-induced declines in river health: three case studies from the western United States. Int J Sediment Res 27:271–287. doi:10.1016/S1001-6279(12)60035-3

    Article  Google Scholar 

  • Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc Lond B Biol Sci 365:2093–2106. doi:10.1098/rstb.2010.0055

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright JP, Naeem S, Hector A et al (2006) Conventional functional classification schemes underestimate the relationship with ecosystem functioning. Ecol Lett 9:111–120. doi:10.1111/j.1461-0248.2005.00850.x

    Article  PubMed  Google Scholar 

  • Wrona FJ, Prowse TD, Reist JD et al (2006) Climate change effects on aquatic biota, ecosystem structure and function. Ambio 35:359–369

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Foundation for Science and Technology (FCT) with a grant to ACL (SFRH/BD/51408/2011) and CESAM funding (UID/AMB/50017/2013). The authors would like to thank the anonymous reviewers for valuable comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Carolina Lima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, A.C., Wrona, F.J. & Soares, A.M.V.M. Fish traits as an alternative tool for the assessment of impacted rivers. Rev Fish Biol Fisheries 27, 31–42 (2017). https://doi.org/10.1007/s11160-016-9446-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-016-9446-x

Keywords

Navigation