Skip to main content

Advertisement

Log in

Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Soil pollution is a major environmental problem and many contaminated sites are tainted with a mixture of organic and heavy metal contaminants. Compared to other remedial strategies, phytoremediation is a low cost, environmentally-friendly, sustainable means of remediating the contamination. This review first provides an overview of phytoremediation studies where the soil is contaminated with just one type of pollutant (heavy metals or organics) and then critically evaluates the applicability of phytotechnologies for the remediation of contaminated sites where the soil is polluted by a mixture of organic and heavy metal contaminants. In most of the earlier research studies, mixed contamination was held to be detrimental to plant growth, yet there were instances where plant growth was more successful in soil with mixed contamination than in the soil with only individual contaminants. New effective phytoremediation strategies can be designed for remediation of co-contaminated sites using: (a) plants species especially adapted to grow in the contaminated site (hyperacumulators, local plants, transgenic plants); (b) endophytic bacteria to enhance the degradation in the rizhosphere; (c) soil amendments to increase the contaminants bioavailability [chelating agents and (bio)surfactants]; (d) soil fertilization to enhance the plant growth and microbial activity in the soil; and (e) coupling phytoremediation with other remediation technologies such as electrokinetic remediation or enhanced biodegradation in the rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboughalma H, Bi R, Schlaak M (2008) Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:926–933

    Article  CAS  Google Scholar 

  • Adesodun J, Atayese M, Agbaje TA, Osadiaye B, Mafe OF, Soretire A (2010) Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water Air Soil Pollut 207:195–201

    Article  CAS  Google Scholar 

  • Ahammed GJ, Choudhary SP, Chen S, Xia X, Shi K, Zhou Y et al (2013) Role of brassinosteroids in alleviation of phenanthrene–cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. J Exp Bot 64:199–213

    Article  CAS  Google Scholar 

  • Alaribe FO, Agamuthu P (2015) Assessment of phytoremediation potentials of lantana camara in pb impacted soil with organic waste additives. Ecol Eng 83:513–520

    Article  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  Google Scholar 

  • Alkorta I, Hernández-Allica J, Becerril J, Amezaga I, Albizu I, Onaindia M et al (2004) Chelate-enhanced phytoremediation of soils polluted with heavy metals. Rev Environ Sci Biotechnol 3:55–70

    Article  CAS  Google Scholar 

  • Andra SS, Datta R, Sarkar D, Saminathan SK, Mullens CP, Bach SB (2009) Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry. Environ Pollut 157:2173–2183

    Article  CAS  Google Scholar 

  • Appenroth K-J, Krech K, Keresztes A, Fischer W, Koloczek H (2010) Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation. Chemosphere 78:216–223

    Article  CAS  Google Scholar 

  • Arthur EL, Rice PJ, Rice PJ, Anderson TA, Baladi SM, Henderson KLD, Coats JR (2005) Phytoremediation—an overview. Crit Rev Plant Sci 24(2):109–122

    Article  CAS  Google Scholar 

  • Baker A, McGrath S, Sidoli C, Reeves R (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49

    Article  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants:a review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soils and waters. CRC Press LLC, Boca Raton, pp 85–107

    Google Scholar 

  • Banks M, Schultz K (2005) Comparison of plants for germination toxicity tests in petroleum-contaminated soils. Water Air Soil Pollut 167:211–219

    Article  CAS  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV et al (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  CAS  Google Scholar 

  • Barceló J, Poschenrieder C (2003) Phytoremediation:principles and perspectives. Contrib Sci 2:333–344

    Google Scholar 

  • Batty LC, Anslow M (2008) Effect of a polycyclic aromatic hydrocarbon on the phytoremediation of zinc by two plant species (Brassica juncea and Festuca arundinacea). Int J Phytoremediation 10:234–249

    Article  CAS  Google Scholar 

  • Batty LC, Dolan C (2013) The potential use of phytoremediation for sites with mixed organic and inorganic contamination. Crit Rev Environ Sci Technol 43:217–259

    Article  CAS  Google Scholar 

  • Becerra-Castro C, Kidd PS, Rodríguez-Garrido B, Monterroso C, Santos-Ucha P, Prieto-Fernández Á (2013) Phytoremediation of hexachlorocyclohexane (HCH)-contaminated soils using cytisus striatus and bacterial inoculants in soils with distinct organic matter content. Environ Pollut 178:202–210

    Article  CAS  Google Scholar 

  • Bedmar MCL, Sanz AP, Inigo MJM, Benito AP (2009) Influence of coupled electrokinetic-phytoremediation on soil remediation. In: Reddy KR, Cameselle C (eds) Electrochemical remediation technologies for polluted soils, sediments and groundwater. Wiley, Hoboken, pp 417–437

    Chapter  Google Scholar 

  • Bell TH, Joly S, Pitre FE, Yergeau E (2014) Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol 32(5):271–280

    Article  CAS  Google Scholar 

  • Bhadra R, Wayment D, Williams R, Barman S, Stone M, Hughes J et al (2001) Studies on plant-mediated fate of the explosives RDX and HMX. Chemosphere 44:1259–1264

    Article  CAS  Google Scholar 

  • Bi R, Schlaak M, Siefert E, Lord R, Connolly H (2011) Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum). Chemosphere 83:318–326

    Article  CAS  Google Scholar 

  • Bjelková M, Genčurová V, Griga M (2011) Accumulation of cadmium by flax and linseed cultivars in field-simulated conditions:a potential for phytoremediation of Cd-contaminated soils. Ind Crops Prod 33:761–774

    Article  CAS  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y et al (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Bolan NS, Adriano DC, Naidu R (2003) Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil-plant system. Rev Environ Contam Toxicol 177:1–44

    CAS  Google Scholar 

  • Bolton H, Girvin DC, Plymale AE, Harvey SD, Workman DJ (1996) Degradation of metal-nitrilotriacetate complexes by Chelatobacter heintzii. Environ Sci Technol 30:931–938

    Article  CAS  Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, Oxford

    Google Scholar 

  • Callahan DL, Baker AJM, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11(1):2–12

    Article  CAS  Google Scholar 

  • Cameselle C, Chirakkara RA, Reddy KR (2013) Electrokinetic-enhanced phytoremediation of soils: status and opportunities. Chemosphere 93(4):626–636

    Article  CAS  Google Scholar 

  • Campbell S, Paquin D, Awaya JD, Li QX (2002) Remediation of benzo[a]pyrene and chrysene-contaminated soil with industrial hemp (Cannabis sativa). Int J Phytorem 4(2):157–168

    Article  CAS  Google Scholar 

  • Cang L, Zhou DM, Wang QY, Fan GP (2012) Impact of electrokinetic-assisted phytoremediation of heavy metal contaminated soil on its physicochemical properties, enzymatic and microbial activities. Electrochim Acta 86:41–48

    Article  CAS  Google Scholar 

  • Castiglione S, Todeschini V, Franchin C, Torrigiani P, Gastaldi D, Cicatelli A et al (2009) Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: a large-scale field trial on heavily polluted soil. Environ Pollut 157:2108–2117

    Article  CAS  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS et al (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  CAS  Google Scholar 

  • Chang M, Wang M, Kuo DTF, Shih Y (2013) Sorption of selected aromatic compounds by vegetables. Ecol Eng 61:74–81

    Article  Google Scholar 

  • Chaudhry Q, Schröder P, Reichhart DW, Grajek W, Marecik R (2002) Prospects and limitations of phytoremediation for the removal of persistent pesticides in the environment. Environ Sci Pollut Res 9:4–17

    Article  CAS  Google Scholar 

  • Cheema SA, Khan MI, Tang X, Zhang C, Shen C, Malik Z et al (2009) Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea). J Hazard Mater 166:1226–1231

    Article  CAS  Google Scholar 

  • Chen Y, Lin Q, He Y, Tian G (2004) Behavior of Cu and Zn under combined pollution of 2, 4-dichlorophenol in the planted soil. Plant Soil 261:127–134

    Article  CAS  Google Scholar 

  • Cheng K, Lai K, Wong J (2008) Effects of pig manure compost and nonionic-surfactant Tween 80 on phenanthrene and pyrene removal from soil vegetated with Agropyron elongatum. Chemosphere 73:791–797

    Article  CAS  Google Scholar 

  • Cheng S, Huang C, Lin Y, Lin S, Chen K (2015) Phytoremediation of lead using corn in contaminated agricultural land-an in situ study and benefit assessment. Ecotoxicol Environ Saf 111:72–77

    Article  CAS  Google Scholar 

  • Chigbo C, Batty L (2013) Effect of EDTA and citric acid on phytoremediation of Cr-B [a] P-co-contaminated soil. Environ Sci Pollut Res 20(12):8955–8963

    Article  CAS  Google Scholar 

  • Chigbo C, Batty L (2015) Chelate-assisted phytoremediation of cu-pyrene-contaminated soil using Z. Mays. Water Air Soil Pollut 226(3). doi:10.1007/s11270-014-2277-2

  • Chigbo C, Batty L, Bartlett R (2013) Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper–pyrene co-contaminated soil. Chemosphere 90(10):2542–2548

    Article  CAS  Google Scholar 

  • Chirakkara RA, Reddy KR (2014) Phytoremediation of mixed contaminated soils—effects of initial concentrations. Geotech Spec Publ 241:1–10

    Google Scholar 

  • Chirakkara RA, Reddy KR (2015) Plant species identification for phytoremediation of mixed contaminated soils. J Hazard Toxic Radioact Waste 19(4). doi:10.1061/(ASCE)HZ.2153-5515.0000282

  • Chirakkara RA, Reddy KR, Cameselle C (2015) Electrokinetic amendment in phytoremediation of mixed contaminated soil. Electrochim Acta 181:179–191. doi:10.1016/j.electacta.2015.01.025

    Article  CAS  Google Scholar 

  • Cho Y, Bolick JA, Butcher DJ (2009) Phytoremediation of lead with green onions (Allium fistulosum) and uptake of arsenic compounds by moonlight ferns (Pteris cretica cv Mayii). Microchem J 91:6–8

    Article  CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110(3):715–719

    CAS  Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Laflèche M (2008) Metal-contaminated soils: remediation practices and treatment technologies. Pract Period Hazard Tox Radioact Waste Manag 12:188–209

    Article  CAS  Google Scholar 

  • Dettenmaier EM, Doucette WJ, Bugbee B (2009) Chemical hydrophobicity and uptake by plant roots. Environ Sci Technol 43:324–329

    Article  CAS  Google Scholar 

  • Dhankher OP, Pilon-Smits EAH, Meagher RB, Doty S (2011) Biotechnological approaches for phytoremediation. In: Altman A, Hasagawa PM (eds) Plant biotechnology and agriculture. Academic Press, Oxford, pp 309–328

    Google Scholar 

  • Dominguez-Rosado E, Pichtel J (2004) Phytoremediation of soil contaminated with used motor oil: II. Greenhouse studies. Environ Eng Sci 21:169–180

    Article  CAS  Google Scholar 

  • Dubé J-S, Galvez-Cloutier R, Winiarski T (2002) Heavy metal transport in soil contaminated by residual light non-aqueous phase liquids (LNAPLs). Can Geotech J 39:279–292

    Article  Google Scholar 

  • Dushenkov V, Kumar PN, Motto H, Raskin I (1995) Rhizofiltration:the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Article  CAS  Google Scholar 

  • Dzantor EK (2007) Phytoremediation: the state of rhizosphere ‘engineering’ for accelerated rhizodegradation of xenobiotic contaminants. J Chem Technol Biotechnol 82(3):228–232

    Article  CAS  Google Scholar 

  • Ebbs SD, Kochian LV (1998) Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environ Sci Technol 32:802–806

    Article  CAS  Google Scholar 

  • EGWRTAC (1997) Remediation of metals-contaminated soils and groundwater. Ground-Water Remediation Technologies Analysis Center. Technology Evaluation Report TE-97-01

  • Essaid HI, Bekins BA, Cozzarelli IM (2015) Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding. Water Resour Res 51(7):4861–4902

    Article  CAS  Google Scholar 

  • Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68(6):989–1003

    Article  CAS  Google Scholar 

  • Fan S, Li P, Gong Z, Ren W, He N (2008) Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L.). Chemosphere 71:1593–1598

    Article  CAS  Google Scholar 

  • Galvez-Cloutier R, Dube JS. (2002) Impact of residual NAPL on water flow and heavy metal transfer in a multimodal grain size soil under saturation conditions: implications for contaminant mobility. Paper presented at the ASTM special technical publication 1415, pp 126–137

  • Gao YZ, Ling WT, Wong MH (2006) Plant-accelerated dissipation of phenanthrene and pyrene from water in the presence of a nonionic-surfactant. Chemosphere 63:1560–1567

    Article  CAS  Google Scholar 

  • Gao Y-Z, Ling W-T, Zhu L-Z, Zhao B-W, Zheng Q-S (2007) Surfactant-enhanced phytoremediation of soils contaminated with hydrophobic organic contaminants: potential and assessment. Pedosphere 17:409–418

    Article  CAS  Google Scholar 

  • Gao Y, Xiong W, Ling W, Wang H, Ren L, Yang Z (2008a) Partitioning of polycyclic aromatic hydrocarbons between plant roots and water. Plant Soil 311:201–209

    Article  CAS  Google Scholar 

  • Gao YZ, Shen Q, Ling WT, Ren LL (2008b) Uptake of polycyclic aromatic hydrocarbons by Trifolium pretense L. from water in the presence of a nonionic surfactant. Chemosphere 72:636–643

    Article  CAS  Google Scholar 

  • Garelick H, Jones H, Dybowska A, Valsami-Jones E (2008) Arsenic pollution sources. Rev Environ Contam Toxicol 197:17–60

    CAS  Google Scholar 

  • Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    Article  CAS  Google Scholar 

  • Germaine KJ, Mcguinness M, Dowling DN (2013) Improving phytoremediation through plant-associated bacteria. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley, New York, pp 961–973

    Chapter  Google Scholar 

  • Gillette JS, Luthy RG, Clemett SJ, Zare RN (1999) Direct observation of polycyclic aromatic hydrocarbons on geosorbents at the subparticle scale. Environ Sci Technol 33:1185–1192

    Article  CAS  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ribeiro AB (2012) Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies. Chemosphere 87:1077–1090

    Article  CAS  Google Scholar 

  • Gomes P, Valente T, Pamplona J, Sequeira Braga MA, Pissarra J, Grande Gil JA, de la Torre ML (2014) Metal uptake by native plants and revegetation potential of mining sulfide-rich waste-dumps. Int J Phytorem 16(11):1087–1103

    Article  CAS  Google Scholar 

  • Greger M, Landberg T, Herbert R, Persson I (2014) Arsenic speciation in submerged and terrestrial soil-plant systems. Paper presented at the one century of the discovery of arsenicosis in Latin America (1914–2014): as 2014 – Proceedings of the 5th international congress on arsenic in the environment, pp 278–279

  • Gutiérrez-Ginés MJ, Hernández AJ, Pérez-Leblic MI, Pastor J, Vangronsveld J (2014) Phytoremediation of soils co-contaminated by organic compounds and heavy metals: bioassays with lupinus luteus L. and associated endophytic bacteria. J Environ Manage 143:197–207

    Article  CAS  Google Scholar 

  • Hamzah A, Kusuma Z, Utomo W, Guritno B (2012) Siam weed (Chromolaena odorata L.) for phytoremediation of artisanal gold mine tailings. J Trop Agric 50:88–91

    CAS  Google Scholar 

  • Hechmi N, Aissa NB, Abdennaceur H, Jedidi N (2013) Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium. Int J Phytorem 15(7):703–713

    Article  CAS  Google Scholar 

  • Hechmi N, Aissa NB, Abdenaceur H, Jedidi N (2014) Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium co-contaminated soils. Environ Sci Pollut Res 21(2):1304–1313

    Article  CAS  Google Scholar 

  • Hodko D, Hyfte JV, Denvir A, Magnuson JW (2000) Methods for enhancing phytoextraction of contaminants from porous media using electrokinetic phenomena. US Patent number US 6145244 A

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    Article  CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) Responses of three grass species to creosote during phytoremediation. Environ Pollut 130:453–463

    Article  CAS  Google Scholar 

  • Huang H, Yu N, Wang L, Gupta D, He Z, Wang K et al (2011) The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil. Bioresour Technol 102:11034–11038

    Article  CAS  Google Scholar 

  • Huesemann MH, Hausmann TS, Fortman TJ, Thom RM, Cullinan V (2009) In situ phytoremediation of PAH- and PCB-contaminated marine sediments with eelgrass (Zostera marina). Ecol Eng 35:1395–1404

    Article  Google Scholar 

  • Hyman M, Dupont RR (2001) Groundwater and soil remediation. Process design and cost estimating of proven technologies. ASCE Press, USA

    Book  Google Scholar 

  • Kamath R, Rentz JA, Schnoor JL, Alvarez PJJ (2004) Phytoremediation of hydrocarbon-contaminated soils: principles and applications. Stud Surf Sci Catal 151:447–478

    Article  CAS  Google Scholar 

  • Kang JW (2014) Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett 36(6):1129–1139

    Article  CAS  Google Scholar 

  • Kärenlampi S, Schat H, Vangronsveld J, Verkleij JAC, van der Lelie D, Mergeay M et al (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ Pollut 107:225–231

    Article  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manage 71(2):95–122

    Article  Google Scholar 

  • Kikuchi T, Tanaka S (2012) Biological removal and recovery of toxic heavy metals in water environment. Crit Rev Environ Sci Technol 42(10):1007–1057

    Article  CAS  Google Scholar 

  • Knight B, Zhao F, McGrath S, Shen Z (1997) Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution. Plant Soil 197:71–78

    Article  CAS  Google Scholar 

  • Kobyłecka J, Skiba E (2008) The effect of phenoxyacetic herbicides on the uptake of copper, zinc and manganese by Triticum Aestivum L. Pol J Environ Stud 17(6):895–901

    Google Scholar 

  • Kos B, Leštan D (2003) Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environ Sci Technol 37:624–629

    Article  CAS  Google Scholar 

  • Kotrba P, Najmanova J, Macek T, Ruml T, Macková M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810

    Article  CAS  Google Scholar 

  • Kuzovkina YA, Quigley MF (2005) Willows beyond wetlands: uses of Salix L. species for environmental projects. Water Air Soil Pollut 162:183–204

    Article  CAS  Google Scholar 

  • Lee JH (2013) An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18(3):431–439

    Article  CAS  Google Scholar 

  • Lee M, Yang M (2010) Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. J Hazard Mater 173:589–596

    Article  CAS  Google Scholar 

  • Lee S, Kommalapati R, Valsaraj K, Pardue J, Constant W (2002) Rate-limited desorption of volatile organic compounds from soils and implications for the remediation of a Louisiana Superfund site. Environ Monit Assess 75:93–111

    Article  Google Scholar 

  • Lee I, Baek K, Kim H, Kim S, Kim J, Kwon Y et al (2007) Phytoremediation of soil co-contaminated with heavy metals and TNT using four plant species. J Environ Sci Health, Part A 42:2039–2045

    Article  CAS  Google Scholar 

  • Lemström S (1904) Electricity in agriculture and horticulture. “The Electrician” Printing & Publishing Company, Ltd., London

    Book  Google Scholar 

  • Liao S-W, Chang W-L (2004) Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. Photogramm Eng Remote Sensing 54:177–185

    Google Scholar 

  • Liao C, Liang X, Lu G, Thai T, Xu W, Dang Z (2015) Effect of surfactant amendment to PAHs-contaminated soil for phytoremediation by maize (Zea mays L.). Ecotoxicol Environ Saf 112:1–6

    Article  CAS  Google Scholar 

  • Lim J-M, Salido AL, Butcher DJ (2004) Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. Microchem J 76:3–9

    Article  CAS  Google Scholar 

  • Lin Q, Mendelssohn IA (1998) The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands. Ecol Eng 10:263–274

    Article  Google Scholar 

  • Lin Q, Mendelssohn IA, Suidan MT, Lee K, Venosa AD (2002) The dose-response relationship between No. 2 fuel oil and the growth of the salt marsh grass, Spartina alterniflora. Mar Pollut Bull 44:897–902

    Article  CAS  Google Scholar 

  • Lin Q, Wang Z, Ma S, Chen Y (2006) Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Sci Total Environ 368:814–822

    Article  CAS  Google Scholar 

  • Liu D, Jiang W, Liu C, Xin C, Hou W (2000) Uptake and accumulation of lead by roots, hypocotyls and shoots of Indian mustard [Brassica juncea (L.)]. Bioresour Technol 71:273–277

    Article  CAS  Google Scholar 

  • Liu R, Jadeja RN, Zhou Q, Liu Z (2012) Treatment and remediation of petroleum-contaminated soils using selective ornamental plants. Environ Eng Sci 29:494–501

    Article  CAS  Google Scholar 

  • Liu Y, Gao M, Gu Z, Luo Z, Ye Y, Lu L (2014) Comparison between the removal of phenol and catechol by modified montmorillonite with two novel hydroxyl-containing gemini surfactants. J Hazard Mater 267:71–80

    Article  CAS  Google Scholar 

  • Loehr RC, Webster MT (1996) Behavior of fresh vs. aged chemicals in soil. Soil Sediment Contam 5:361–383

    Article  CAS  Google Scholar 

  • Lu M, Zhang ZZ (2014) Phytoremediation of soil co-contaminated with heavy metals and deca-BDE by co-planting of Sedum alfredii with tall fescue associated with Bacillus cereus JP12. Plant Soil 382(1–2):89–102

    Article  CAS  Google Scholar 

  • Lu LT, Chang IC, Hsiao TY, Yu YH, Ma HW (2007) Identification of pollution source of cadmium in soil: application of material flow analysis and a case study in Taiwan. Environ Sci Pollut Res 14(1):49–59

    Article  CAS  Google Scholar 

  • Luthy RG, Dzombak DA, Peters CA, Roy SB, Ramaswami A, Nakles DV, Nott BR (1994) Remediating tar-contaminated soils at manufactured gas plant sites. Environ Sci Technol 28(6):266A–275A

    Article  CAS  Google Scholar 

  • Ma X, Wang C (2010) Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems. Environ Eng Sci 27:989–992

    Article  CAS  Google Scholar 

  • Macek T, Francová K, Kochánková L, Lovecká P, Ryslavá E, Rezek J, Surá M, Triska J, Demnerová K, Macková M (2004) Phytoremediation: biological cleaning of a polluted environment. Rev Environ Health 19(1):63–82

    Article  CAS  Google Scholar 

  • Madrid F, Liphadzi MS, Kirkham MB (2003) Heavy metal displacement in chelate-irrigated soil during phytoremediation. J Hydrol 272:107–119

    Article  CAS  Google Scholar 

  • Mao X, Jiang R, Xiao W, Yu J (2015) Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater 285:419–435

    Article  CAS  Google Scholar 

  • Marchal G, Smith KEC, Mayer P, Wollesen De Jonge L, Karlson UG (2014) Impact of soil amendments and the plant rhizosphere on PAH behaviour in soil. Environ Pollut 188:124–131

    Article  CAS  Google Scholar 

  • Marchiol L, Sacco P, Assolari S, Zerbi G (2004) Reclamation of polluted soil: phytoremediation potential of crop-related Brassica species. Water Air Soil Pollut 158:345–356

    Article  CAS  Google Scholar 

  • Marmiroli N, Marmiroli M, Maestri E (2006) Phytoremediation and phytotechnologies: a review for the present and the future. In: Twardowska I, Allen HE, Haggblom MH (eds) Soil and water pollution monitoring, protection and remediation. NATO science series, vol 69. Springer, Dordretch, pp 403–416

    Chapter  Google Scholar 

  • Marmiroli M, Pietrini F, Maestri E, Zacchini M, Marmiroli N, Massacci A (2011) Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiol 31(12):1319–1334

    Article  CAS  Google Scholar 

  • Marques AP, Rangel AO, Castro PM (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654

    Article  CAS  Google Scholar 

  • Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, Van Der Lelie D (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol Genet Eng Rev 23:175–207

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14(3):277–282

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232(1–2):207–214

    Article  CAS  Google Scholar 

  • Medina VF, McCutcheon SC (1996) Phytoremediation:modeling removal of TNT and its breakdown products. Remediat J 7:31–45

    Article  Google Scholar 

  • Meers E, Ruttens A, Hopgood M, Lesage E, Tack FMG (2005) Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere 61:561–572

    Article  CAS  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37(8):1362–1375

    Article  CAS  Google Scholar 

  • Mehmood F, Rashid A, Mahmood T, Dawson L (2013) Effect of DTPA on Cd solubility in soil—accumulation and subsequent toxicity to lettuce. Chemosphere 90(6):1805–1810

    Article  CAS  Google Scholar 

  • Memarian R, Ramamurthy AS (2012) Effects of surfactants on rhizodegradation of oil in a contaminated soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:1486–1490

    Article  CAS  Google Scholar 

  • Merkl N, Schultze-Kraft R, Infante C (2005) Phytoremediation in the tropics–influence of heavy crude oil on root morphological characteristics of graminoids. Environ Pollut 138:86–91

    Article  CAS  Google Scholar 

  • Miller RM (1995) Biosurfactant-facilitated remediation of metal-contaminated soils. Environ Health Perspect 103:59

    Article  CAS  Google Scholar 

  • Miya RK, Firestone MK (2001) Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris. J Environ Qual 30:191–1918

    Article  Google Scholar 

  • Moore FP, Barac T, Borremans B, Oeyen L, Vangronsveld J, Van der Lelie D et al (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site:the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556

    Article  CAS  Google Scholar 

  • Mulder H, Wassink GR, Breure AM, van Andel JG, Rulkens WH (1998) Effect of nonionic surfactants on naphthalene dissolution and biodegradation. Biotechnol Bioeng 60:397–407

    Article  CAS  Google Scholar 

  • National Research Council (1997) Innovations in ground water and soil cleanup: from concept to commercialization. The National Academies Press, Washington

    Google Scholar 

  • Nedunuri KV, Govindaraju RS, Banks MK, Schwab AP, Chen Z (2000) Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. J Environ Eng 126:483–490

    Article  CAS  Google Scholar 

  • Noordman WH, Wachter JH, de Boer GJ, Janssen DB (2002) The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. J Biotechnol 94:195–212

    Article  CAS  Google Scholar 

  • O’Connor CS, Lepp N, Edwards R, Sunderland G (2003) The combined use of electrokinetic remediation and phytoremediation to decontaminate metal-polluted soils: a laboratory-scale feasibility study. Environ Monit Assess 84:141–158

    Article  Google Scholar 

  • Ogra Y, Awaya Y, Anan Y (2015) Comparison of accumulation of four metalloids in allium sativum. Bull Environ Contam Toxicol 94(5):604–608

    Article  CAS  Google Scholar 

  • Olson PE, Fletcher JS (1999) Field evaluation of mulberry root structure with regard to phytoremediation. Bioremediat J 3:27–34

    Article  Google Scholar 

  • Ostrowska A, Porębska G, Szczubiałka Z (2006) Limitation of Pb and Cd uptake by pine. Environ Eng Sci 23:595–602

    Article  Google Scholar 

  • Ouvrard S, Barnier C, Bauda P, Beguiristain T, Biache C, Bonnard M et al (2011) In situ assessment of phytotechnologies for multicontaminated soil management. Int J Phytorem 13:245–263

    Article  Google Scholar 

  • Palmer CE, Warwick S, Keller W (2001) Brassicaceae (Cruciferae) family, plant biotechnology, and phytoremediation. Int J Phytorem 3:245–287

    Article  CAS  Google Scholar 

  • Palmroth MRT, Pichtel J, Puhakka JA (2002) Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresour Technol 84:221–228

    Article  CAS  Google Scholar 

  • Palmroth M, Koskinen PP, Pichtel J, Vaajasaari K, Joutti A, Tuhkanen AT et al (2006) Field-scale assessment of phytotreatment of soil contaminated with weathered hydrocarbons and heavy metals. J Soil Sediments 6:128–136

    Article  CAS  Google Scholar 

  • Pavel P-, Puschenreiter M, Wenzel WW, Diacu E, Barbu CH (2014) Aided phytostabilization using miscanthus sinensis × giganteus on heavy metal-contaminated soils. Sci Total Environ 479–480(1):125–131

    Article  CAS  Google Scholar 

  • Peralta-Videa JR, Gardea-Torresdey JL, Gomez E, Tiemann KJ, Parsons JG, Carrillo G (2002) Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environ Pollut 119:291–301

    Article  CAS  Google Scholar 

  • Pérez-López R, Márquez-García B, Abreu MM, Nieto JM, Córdoba F (2014) Erica andevalensis and erica australis growing in the same extreme environments: phytostabilization potential of mining areas. Geoderma 230–231:194–203

    Article  CAS  Google Scholar 

  • Pichtel J, Liskanen P (2001) Degradation of diesel fuel in rhizosphere soil. Environ Eng Sci 18:145–157

    Article  CAS  Google Scholar 

  • Pignatello JJ, Katz BG, Li H (2010) Sources, interactions, and ecological impacts of organic contaminants in water, soil, and sediment: an introduction to the special series. J Environ Qual 39(4):1133–1138

    Article  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Poly B, Sreedeep S (2011) Influence of soil-multiple contaminant retention parameters on contaminant fate prediction. J Hazard Toxic Radioact Waste 15(3):180–187

    Article  CAS  Google Scholar 

  • Pradhan SP, Conrad JR, Paterek JR, Srivastava VJ (1998) Potential of phytoremediation for treatment of PAHs in soil at MGP sites. Soil Sediment Contam 7(4):467–480

    Article  CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540

    Article  CAS  Google Scholar 

  • Qiu X, Reed BE, Viadero RC (2004) Effects of flavonoids on 14C [7, 10]-benzo [a] pyrene degradation in root zone soil. Environ Eng Sci 21:637–646

    Article  Google Scholar 

  • Ramamurthy AS, Memarian R (2012) Phytoremediation of mixed soil contaminants. Water Air Soil Pollut 223:511–518

    Article  CAS  Google Scholar 

  • Ramamurthy AS, Memarian R (2014) Chelate enhanced phytoremediation of soil containing a mixed contaminant. Environ Earth Sci 72(1):201–206

    Article  CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? and what makes them so interesting? Plant Sci 180(2):169–181

    Article  CAS  Google Scholar 

  • Reddy KR (2011) Special issue on contaminant mixtures: fate, transport, and remediation. J Hazard Toxic Radioact Waste 15:128–129

    Article  Google Scholar 

  • Reddy KR, Chinthamreddy S, Saichek RE, Cutright TJ (2003) Nutrient amendment for the bioremediation of a chromium-contaminated soil by electrokinetics. Energy Sources 25(9):931–943

    Article  CAS  Google Scholar 

  • Rentz JA, Chapman B, Alvarez PJJ, Schnoor JL (2003) Stimulation of hybrid poplar growth in petroleum-contaminated soils through oxygen addition and soil nutrient amendments. Int J Phytorem 5:57–72

    Article  CAS  Google Scholar 

  • Robinson B, Leblanc M, Petit D, Brooks R, Kirkman J, Gregg PH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56

    Article  CAS  Google Scholar 

  • Robinson BH, Mills TM, Petit D, Fung LE, Green SR, Clothier BE (2000) Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227:301–306

    Article  CAS  Google Scholar 

  • Roongtanakiat N, Chairoj P (2001) Uptake potential of some heavy metals by vetiver grass. Kasetsart J (Nat Sci) 35:46–50

    CAS  Google Scholar 

  • Rylott EL, Bruce NC (2009) Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 27:73–81

    Article  CAS  Google Scholar 

  • Saathoff AJ, Ahner B, Spanswick RM, Walker LP (2011) Detection of phytochelatin in the xylem sap of Brassica napus. Environ Eng Sci 28:103–111

    Article  CAS  Google Scholar 

  • Saichek RE, Reddy KR (2005) Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: a review. Crit Rev Environ Sci Technol 35:115–192

    Article  CAS  Google Scholar 

  • Said W, Lewis D (1991) Quantitative assessment of the effects of metals on microbial degradation of organic chemicals. Appl Environ Microbiol 57:1498–1503

    CAS  Google Scholar 

  • Sandrin TR, Maier RM (2003) Impact of metals on the biodegradation of organic pollutants. Environ Health Perspect 111:1093–1101

    Article  CAS  Google Scholar 

  • Sawyer C, McCarty P, Parkin G (1978) Chemistry for environmental engineers, 3rd edn. McGraw Hill Book Company, New York

    Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318A–323A

    Article  CAS  Google Scholar 

  • Schubert M (2015) Using radon as environmental tracer for the assessment of subsurface non-aqueous phase liquid (NAPL) contamination—a review. Eur Phys J Spec Top 224(4):717–730

    Article  CAS  Google Scholar 

  • Schwarzenbach R, Gshwend P, Imboden D (1993) Sorption: solid-aqueous solution exchange. In: Schwarzenbach R, Gshwend P, Imboden D (eds) Environmental organic chemistry. New York: Wiley-Interscience

    Google Scholar 

  • Schwitzguébel J (2016) Phytoremediation of soils contaminated by organic compounds: hype, hope and facts. J Soils Sediments. doi:10.1007/s11368-015-1253-9

  • Shanker AK, Ravichandran V, Pathmanabhan G (2005) Phytoaccumulation of chromium by some multipurpose-tree seedlings. Agrofor Syst 64(1):83–87

    Article  Google Scholar 

  • Sharma HD, Reddy KR (2004) Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies. Wiley, New York

    Google Scholar 

  • Sharma J, Bhar S, Veerappapillai S (2015) Phytoremediation of polychlorinated biphenyls: a brief review. Res J Pharm Biol Chem Sci 6(2):1466–1471

    CAS  Google Scholar 

  • Shen Z, Zhao F, McGrath S (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant, Cell Environ 20:898–906

    Article  CAS  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2012) Phytoremediation of metal contaminated mining sites. Int J Earth Sci Eng 5:428–436

    CAS  Google Scholar 

  • Shi X, Zhang X, Chen G, Chen Y, Wang L, Shan X (2011) Seedling growth and metal accumulation of selected woody species in copper and lead/zinc mine tailings. J Environ Sci 23(2):266–274

    Article  CAS  Google Scholar 

  • Shutcha MN, Faucon M-, Kamengwa Kissi C, Colinet G, Mahy G, Ngongo Luhembwe M, Visser M, Meerts P (2015) Three years of phytostabilisation experiment of bare acidic soil extremely contaminated by copper smelting using plant biodiversity of metal-rich soils in tropical africa (katanga, DR congo). Ecol Eng 82:81–90

    Article  Google Scholar 

  • Singer AC, Bell T, Heywood CA, Smith JAC, Thompson IP (2007) Phytoremediation of mixed-contaminated soil using the hyperaccumulator plant Alyssum lesbiacum: evidence of histidine as a measure of phytoextractable nickel. Environ Pollut 147(1):74–82

    Article  CAS  Google Scholar 

  • Singh S, Sinha S (2005) Accumulation of metals and its effects in Brassica juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste. Ecotoxicol Environ Saf 62:118–127

    Article  CAS  Google Scholar 

  • Singh S, Eapen S, Thorat V, Kaushik CP, Raj K, D’Souza SF (2008) Phytoremediation of 137 cesium and 90 strontium from solutions and low-level nuclear waste by Vetiveria zizanoides. Ecotoxicol Environ Saf 69:306–311

    Article  CAS  Google Scholar 

  • Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharmacol 43(3):246–253

    Article  CAS  Google Scholar 

  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11(3):229–254

    Article  CAS  Google Scholar 

  • Sun Y, Zhou Q, Xu Y, Wang L, Liang X (2011) Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula. J Hazard Mater 186:2075–2082

    Article  CAS  Google Scholar 

  • Sun Y, Xu Y, Zhou Q, Wang L, Lin D, Liang X (2013) The potential of gibberellic acid 3 (GA3) and Tween-80 induced phytoremediation of co-contamination of Cd and Benzo[a]pyrene (B[a]P) using Tagetes patula. J Environ Manage 114:202–208

    Article  CAS  Google Scholar 

  • Tyagi M, da Fonseca MMR, de Carvalho CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22(2):231–241

    Article  CAS  Google Scholar 

  • USEPA (1995) Contaminants and remedial options at selected metal-contaminated sites. Report number EPA/540/R-95/512

  • USEPA (1996) Sources of lead in soil. Report number EPA 747-R-98-001b

  • USEPA (1997) Clean up the nation’s waste sites: markets and technology trends. Report number EPA 542-R-96-005

  • USEPA (1999) Introduction to phytoremediation. Report number EPA/600/R 99/107. Washington: Office of Research and Development

  • USEPA (2006) In situ treatment technologies for contaminated soil. Report number EPA 542/F-06/013

  • USGAO (2010) SUPERFUND. EPA’s estimated costs to remediate existing sites exceed current funding levels, and more sites are expected to be added to the national priorities list. United States Government Accountability Office. Report number GAO-10-380

  • Van Aken B (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol 20:231–236

    Article  CAS  Google Scholar 

  • Volkering F, Breure AM, Rulkens WH (1997) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417

    Article  CAS  Google Scholar 

  • Wang JY, Yang L, Tseng C-C, Hsu H-L (2008) Application of phytoremediation on soil contaminated by pyrene. Environ Eng Sci 25:829–838

    Article  CAS  Google Scholar 

  • Wei SH, Zhou QX (2006) Phytoremediation of cadmium-contaminated soils by Rorippa globosa using two-phase planting. Environ Sci Pollut Res 13:151–155

    Article  CAS  Google Scholar 

  • Wei S, Li Y, Zhou Q, Srivastava M, Chiu S, Zhan J et al (2010) Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L. J Hazard Mater 176:269–273

    Article  CAS  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700

    Article  CAS  Google Scholar 

  • Weyens N, van der Lelie D, Artois T, Smeets K, Taghavi S, Newman L et al (2009) Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environ Sci Technol 43:9413–9418

    Article  CAS  Google Scholar 

  • Weyens N, Croes S, Dupae J, Newman L, van der Lelie D, Carleer R et al (2010) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut 158:2422–2427

    Article  CAS  Google Scholar 

  • Weyens N, Truyens S, Saenen E, Boulet J, Dupae J, Taghavi S et al (2011) Endophytes and their potential to deal with co-contamination of organic contaminants (toluene) and toxic metals (nickel) during phytoremediation. Int J Phytorem 13:244–255

    Article  CAS  Google Scholar 

  • White JC (2009) Optimizing planting density for p, p’-DDE phytoextraction by Cucurbita pepo. Environ Eng Sci 26:369–376

    Article  CAS  Google Scholar 

  • White PM, Wolf DC, Thomas GJ, Reynolds CM (2005) Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water Air Soil Pollut 169:207–220

    Article  CAS  Google Scholar 

  • Willscher S, Mirgorodsky D, Jablonski L, Ollivier D, Merten D, Büchel G et al (2013) Field scale phytoremediation experiments on a heavy metal and uranium contaminated site, and further utilization of the plant residues. Hydrometallurgy 131–132:46–53

    Article  CAS  Google Scholar 

  • Wójcik M, Sugier P, Siebielec G (2014) Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits. Sci Total Environ 487(1):313–322

    Article  CAS  Google Scholar 

  • Wu LH, Luo YM, Xing XR, Christie P (2004) EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric Ecosyst Environ 102:307–318

    Article  CAS  Google Scholar 

  • Wu L, Luo Y, Song J (2007) Manipulating soil metal availability using EDTA and low-molecular-weight organic acids. In: Willey N (ed) Phytoremediation. Nato science series, vol 69. Dordretch, Springer, pp 291–303

    Google Scholar 

  • Wu L, Li Z, Han C, Liu L, Teng Y, Sun X et al (2012) Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenyls. Int J Phytorem 14(6):570–584

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. doi:10.5402/2011/402647

    Google Scholar 

  • Zacchini M, Pietrini F, Scarascia Mugnozza G, Iori V, Pietrosanti L, Massacci A (2009) Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut 197:23–34

    Article  CAS  Google Scholar 

  • Zhang H, Dang Z, Zheng L, Yi X (2009) Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.). Int J Environ Sci Technol 6:249–258

    Article  Google Scholar 

  • Zhang X, Xia H, Li Z, Zhuang P, Gao B (2010) Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresour Technol 101:2063–2066

    Article  CAS  Google Scholar 

  • Zhi-Xin N, Sun LN, Sun TH, Li YS, Wang H (2007) Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. J Environ Sci (China) 19:961–967

    Article  Google Scholar 

  • Zhou DM, Chen HF, Cang L, Wang YL (2007) Ryegrass uptake of soil Cu/Zn induced by EDTA/EDDS together with a vertical direct-current electrical field. Chemosphere 67:1671–1676

    Article  CAS  Google Scholar 

  • Zhu YL, Zayed AM, Qian J-H, De Souza M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J Environ Qual 28(1):339–344

    Article  CAS  Google Scholar 

  • Zhu Z-q, Yang X-e, Wang K, Huang H-g, Zhang X, Fang H et al (2012) Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes. J Hazard Mater 235–236:144–151

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Cameselle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirakkara, R.A., Cameselle, C. & Reddy, K.R. Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants. Rev Environ Sci Biotechnol 15, 299–326 (2016). https://doi.org/10.1007/s11157-016-9391-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-016-9391-0

Keywords

Navigation