Skip to main content

Advertisement

Log in

Aliphatic organochlorine degradation in subsurface environments

  • review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Organochlorines are simultaneously of great value to society and a great threat to human health and the living environment. Their recalcitrance, toxicity and carcinogenicity have driven research activity towards an understanding of degradation mechanisms in the environment and the development of technologies enhancing degradation. This review focuses primarily on the role of organochlorine respiring bacteria in the dechlorination of chlorinated ethenes, ethanes and methanes in subsurface environments. Attention is given to the biogeochemical setting of organochlorine reduction with the influences of co-habiting microbial communities and iron and sulphur cycling considered. This is done in relation to existing technologies to enhance subsurface reductive dechlorination including reactive iron barriers and nano-scale zero valent iron. Overall, a remarkable body of knowledge has been generated in this sphere over the past two decades, giving hope that the global community can continue making use of organochlorines without further impacting on human and environmental health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamson DT, Parkin GF (2000) Impact of mixtures of chlorinated aliphatic hydrocarbons on a high-rate, tetrachloroethene-dechlorinating enrichment culture. Environ Sci Technol 34:1959–1965

    CAS  Google Scholar 

  • AFCEE (2008) Workshop on in situ biogeochemical transformation of chlorinated solvents. U. D. o. D. A. F. C. f. E. E. a. ESTCP

  • Ammonette JE, Workman DJ, Kennedy DW, Fruchter JS, Gorby YA (2000) Dechlorination of carbon tetrachloride by Fe(II) associated with goethite. Environ Sci Technol 34:4606–4613

    Google Scholar 

  • Arnold WA, Ball WP, Roberts AL (1999) Polychlorinated ethane reaction with zero-valent zinc: pathways and rate control. J Contam Hydrol 40(2):183–200

    CAS  Google Scholar 

  • Assaf-Anid N, Lin KY (2002) Carbon tetrachloride reduction by Fe2+, S2−, and FeS with vitamin B12 as organic amendment. J Environ Eng Asce 128(1):94–99

    CAS  Google Scholar 

  • Auffan M, Achouak W, Rose J, Roncato MA, Chanéac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero JY (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42(17):6730–6735

    CAS  Google Scholar 

  • Aulenta F, Majone M, Tandoi V (2006) Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions. J Chem Technol Biotechnol 81(9):1463–1474

    CAS  Google Scholar 

  • Aulenta F, Pera A, Rossetti S, Papini MP, Majone M (2007) Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors. Water Res 41:27–38

    CAS  Google Scholar 

  • Aulenta F, Beccari M, Majone M, Papini MP, Tandoi V (2008) Competition for H2 between sulfate reduction and dechlorination in butyrate-fed anaerobic cultures. Process Biochem 43:161–168

    CAS  Google Scholar 

  • Azizian MF, Marshall IPG, Behrens S, Spormann AM, Semprini L (2010) Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column. J Contam Hydrol 113:77–92

    CAS  Google Scholar 

  • Bagley DM, Lalonde M, Kaseros V, Stasiuk KE, Sleep BE (2000) Acclimation of anaerobic systems to biodegrade tetrachloroethene in the presence of carbon tetrachloride and chloroform. Water Res 34(1):171–178

    CAS  Google Scholar 

  • Ballapragada BS, Stensel HD, Puhakka JA, Ferguson JF (1997) Effect of hydrogen on reductive dechlorination of chlorinated ethenes. Environ Sci Technol 31:1728–1734

    CAS  Google Scholar 

  • Barnes RJ, Riba O, Gardner MN, Singer AC, Jackman SA, Thompson IP (2010a) Inhibition of biological TCE and sulphate reduction in the presence of iron nanoparticles. Chemosphere 80(5):554–562

    CAS  Google Scholar 

  • Barnes RJ, van der Gast CJ, Riba O, Lehtovirta LE, Prosser JI, Dobson PJ, Thompson IP (2010b) The impact of zero-valent iron nanoparticles on a river water bacterial community. J Hazard Mater 184(1–3):73–80

    CAS  Google Scholar 

  • Becker JG, Freedman DL (1994) Use of cyanocobalamin to enhance anaerobic biodegradation of chloroform. Environ Sci Technol 28(11):1942–1949

    CAS  Google Scholar 

  • Belay N, Daniels L (1987) Production of ethane, ethylene, and acetylene from halogenated hydrocarbons by methanogenic bacteria. Appl Environ Microbiol 53(7):1604–1610

    CAS  Google Scholar 

  • Berggren DRV, Marshall IPG, Azizian MF, Spormann AM, Semprini L (2013) Effects of sulfate reduction on the bacterial community and kinetic parameters of a dechlorinating culture under chemostat growth conditions. Environ Sci Technol 47(4):1879–1886

    CAS  Google Scholar 

  • Bouwer EJ, McCarty PL (1983) Transformations of 1-and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl Environ Microbiol 45(4):1286–1294

    CAS  Google Scholar 

  • Butler JH (2000) Atmospheric chemistry: better budgets for methyl halides? Nature 403(6767):260–261

    CAS  Google Scholar 

  • Butler EC, Hayes KF (1999) Kinetics of the transformation of trichloroethylene and tetrachloroethylene by iron sulfide. Environ Sci Technol 33:2021–2027

    CAS  Google Scholar 

  • Butler EC, Hayes KF (2000) Kinetics of the transformation of halogenated aliphatic compounds by iron sulfide. Environ Sci Technol 34(3):422–429

    CAS  Google Scholar 

  • Castro C, Helvenston M, Belser N (1994) Biodehalogenation, reductive dehalogenation by Methanobacterium Thermoautotrophicum. Comparison with nickel (I) octaethylisobacteriochlorin anion. An F-430 model. Environ Toxicol Chem 13(3):429–433

    CAS  Google Scholar 

  • Chang H-L, Alvarez-Cohen L (1996) Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing cultures. Appl Environ Microbiol 62(9):3371–3377

    CAS  Google Scholar 

  • Chen J, Xiu Z, Lowry GV, Alvarez PJJ (2011) Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Res 45(5):1995–2001

    CAS  Google Scholar 

  • Choe S, Lee SH, Chang YY, Hwang KY, Khim J (2001) Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0. Chemosphere 42(4):367–372

    CAS  Google Scholar 

  • Choi K, Lee W (2009) Reductive dechlorination of carbon tetrachloride in acidic soil manipulated with iron(II) and bisulfide ion. J Hazard Mater 172(2–3):623–630

    CAS  Google Scholar 

  • Comba S, Sethi R (2009) Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res 43:3717–3726

    CAS  Google Scholar 

  • Cox MJ, Schäfer H, Nightingale PD, McDonald IR, Murrell JC (2012) Diversity of methyl halide-degrading microorganisms in oceanic and coastal waters. FEMS Microbiol Lett 334(2):111–118

    CAS  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125

    Google Scholar 

  • Cundy AB, Hopkinson L, Whitby RLD (2008) Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400(1–3):42–51

    CAS  Google Scholar 

  • Curtis GP, Reinhard M (1994) Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthraquinone disulfonate and humic acid. Environ Sci Technol 28:2393–2401

    CAS  Google Scholar 

  • Danielsen KM, Hayes KF (2004) pH dependence of carbon tetrachloride reductive dechlorination by magnetite. Environ Sci Technol 38:4745–4752

    CAS  Google Scholar 

  • Danielsen KM, Gland JL, Hayes KF (2005) Influence of amine buffers on carbon tetrachloride reductive dechlorination by the iron oxide magnetite. Environ Sci Technol 39(3):756–763

    CAS  Google Scholar 

  • Davis A, Fennemore GG, Peck C, Walker CR, McIlwraith J, Thomas S (2003) Degradation of carbon tetrachloride in a reducing groundwater environment: implications for natural attenuation. Appl Geochem 18(4):503–525

    CAS  Google Scholar 

  • De Bruin WP, Kotterman M, Posthumus MA, Schraa G, Zehnder A (1992) Complete biological reductive transformation of tetrachloroethene to ethane. Appl Environ Microbiol 58(6):1996–2000

    Google Scholar 

  • De Wildeman S, Diekert G, Van Langenhove H, Verstraete W (2003a) Stereoselective microbial dehalorespiration with vicinal dichlorinated alkanes. Appl Environ Microbiol 69(9):5643–5647

    Google Scholar 

  • De Wildeman S, Neumann A, Diekert G, Verstraete W (2003b) Growth-substrate dependent dechlorination of 1, 2-dichloroethane by a homoacetogenic bacterium. Biodegradation 14(4):241–247

    Google Scholar 

  • Devlin JF, Muller D (1999) Field and laboratory studies of carbon tetrachloride transformation in a sandy aquifer under sulfate reducing conditions. Environ Sci Technol 33(7):1021–1027

    CAS  Google Scholar 

  • DeWeerd KA, Mandelco L, Tanner RS, Woese CR, Suflita JM (1990) Desulfomonile tiedjei gen.nov. and sp.nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch Microbiol 154:23–30

    CAS  Google Scholar 

  • Diao M, Yao M (2009) Use of zero-valent iron nanoparticles in inactivating microbes. Water Res 43(20):5243–5251

    CAS  Google Scholar 

  • Ding C, Zhao S, He J (2014) A Desulfitobacterium sp. strain PR reductively dechlorinates both 1, 1, 1-trichloroethane and chloroform. Environ Microbiol. doi:10.1111/1462-2920.12387

  • Distefano TD, Gossett JM, Zinder S (1992) Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture. Appl Environ Microbiol 58(11):3622–3629

    CAS  Google Scholar 

  • Doherty RE (2000a) A history of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1,1,1-trichloroethane in the United States: Part 1—historical background; carbon tetrachloride and tetrachloroethylene. J Environ Forensics 1:69–81

    CAS  Google Scholar 

  • Doherty RE (2000b) A history of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1, 1, 1-trichloroethane in the United States: Part 1—historical background; carbon tetrachloride and tetrachloroethylene. Environmental forensics 1(2):69–81

    CAS  Google Scholar 

  • Drzyzga O, Gottschal JC (2002) Tetrachloroethene dehalorespiration and growth of Desulfitobacterium frappieri TCE1 in strict dependence on the activity of Desulfovibrio fructosivorans. Appl Environ Microbiol 68(2):642–649

    CAS  Google Scholar 

  • Drzyzga O, El Mamouni R, Agathos SN, Gottschal JC (2002) Dehalogenation of chlorinated ethenes and immobilization of nickel in anaerobic sediment columns under sulfidogenic conditions. Environ Sci Technol 36(12):2630–2635

    CAS  Google Scholar 

  • Duhamel M, Edwards EA (2007) Growth and yields of dechlorinators, acetogens, and methanogens during reductive dechlorination of chlorinated ethenes and dihaloelimination of 1,2-dichloroethane. Environ Sci Technol 41:2303–2310

    CAS  Google Scholar 

  • Duhamel M, Wehr SD, Yu L, Rizvi H, Seepersad D, Dworatzek S, Cox EE, Edwards EA (2002) Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Res 36:4193–4202

    CAS  Google Scholar 

  • Egli C, Scholtz R, Cook AM, Leisinger T (1987) Anaerobic dechlorination of tetrachloromethane and 1, 2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp. and Methanobacterium sp. FEMS Microbiol Lett 43(3):257–261

    CAS  Google Scholar 

  • Egli C, Tschan T, Scholtz R, Cook AM, Leisinger T (1988) Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii. Appl Environ Microbiol 54(11):2819–2824

    CAS  Google Scholar 

  • Egli C, Stromeyer S, Cook AM, Leisinger T (1990) Transformation of tetra-and trichloromethane to CO2 by anaerobic bacteria is a non-enzymic process. FEMS Microbiol Lett 68(1):207–212

    CAS  Google Scholar 

  • Elliott DW, Zhang WX (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35(24):4922–4926

    CAS  Google Scholar 

  • Ellis DE, Lutz EJ, Odom JM, Buchanan RJ, Bartlett CL, Lee MD, Harkness MR, Deweerd KA (2000) Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 34(11):2254–2260

    CAS  Google Scholar 

  • Elsner M, Haderlein SB, Kellerhals T, Luzi S, Zwank L, Angst W, Schwarzenbach RP (2004) Mechanisms and products of surface-mediated reductive dehalogenation of carbon tetrachloride by Fe(II) on goethite. Environ Sci Technol 38:2058–2066

    CAS  Google Scholar 

  • Erbs M, Hansen HCB, Olsen CE (1999) Reductive dechlorination of carbon tetrachloride using iron(II) iron(III) hydroxide sulfate (green rust). Environ Sci Technol 33(2):307–311

    CAS  Google Scholar 

  • Fennell DE, Gossett JM, Zinder SH (1997) Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene. Environ Sci Technol 31:918–926

    CAS  Google Scholar 

  • Freedman DL, Gossett JM (1989) Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol 55(9):2144–2151

    CAS  Google Scholar 

  • Freedman DL, Gossett J (1991) Biodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditions. Appl Environ Microbiol 57(10):2847–2857

    CAS  Google Scholar 

  • Freedman DL, Smith CR, Noguera DR (1997) Dichloromethane biodegradation under nitrate-reducing conditions. Water Environ Res 69(1):115–122

    CAS  Google Scholar 

  • Fultz ML, Durst RA (1982) Mediator compounds for the electrochemical study of biological redox systems: a compilation. Anal Chim Acta 140(1):1–18

    CAS  Google Scholar 

  • Futagami T, Yamaguchi T, Nakayama S-I, Goto M, Furukawa K (2006) Effects of chloromethanes on growth of and deletion of the pce gene cluster in dehalorespiring Desulfitobacterium hafniense strain Y51. Appl Environ Microbiol 72(9):5998–6003

    CAS  Google Scholar 

  • Gälli R, Leisinger T (1985) Specialized bacterial strains for the removal of dichloromethane from industrial waste. Conserv Recycl 8(1):91–100

    Google Scholar 

  • Galli R, Stucki G, Leisinger T (1982) Mechanism of dehalogenation of dichloromethane by cell extracts of Hyphomicrobium DM2. Experientia 38:1378

    Google Scholar 

  • Gerlach R, Cunningham AB, Caccavo F (2000) Dissimilatory iron-reducing bacteria can influence the reduction of carbon tetrachloride by iron metal. Environ Sci Technol 34(12):2461–2464

    CAS  Google Scholar 

  • Gerritse J, Renard V, Gomes TP, Lawson PA, Collins MD, Gottschal JC (1996) Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch Microbiol 165(2):132–140

    CAS  Google Scholar 

  • Gillham RW, O’Hannesin SF (1994) Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32(6):958–967

    CAS  Google Scholar 

  • Glazier R, Venkatakrishnan R, Gheorghiu F, Walata L, Nash R, Zhang WX (2003) Nanotechnology takes root. Civ Eng 73(5):64–69

    Google Scholar 

  • Gribble GW (1992) Naturally occurring organohalogen compounds—a survey. J Nat Prod 55(10):1353–1395

    CAS  Google Scholar 

  • Gribble G (1994) The abundant natural sources and uses of chlorinated chemicals. Am J Public Health 84(7):1183

    CAS  Google Scholar 

  • Grostern A, Edwards EA (2006a) A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes. Appl Environ Microbiol 72(12):7849–7856

    CAS  Google Scholar 

  • Grostern A, Edwards EA (2006b) Growth of Dehalobacter and Dehalococcoides spp. during degradation of chlorinated ethanes. Appl Environ Microbiol 72(1):428–436

    CAS  Google Scholar 

  • Grostern A, Edwards EA (2009) Characterization of a Dehalobacter coculture that dechlorinates 1,2-dichloroethane to ethene and identification of the putative reductive dehalogenase gene. Appl Environ Microbiol 75(9):2684–2693

    CAS  Google Scholar 

  • Grostern A, Duhamel M, Dworatzek S, Edwards EA (2010) Chloroform respiration to dichloromethane by a Dehalobacter population. Environ Microbiol 12(4):1053–1060

    CAS  Google Scholar 

  • Guerrero-Barajas C, Field JA (2005) Riboflavin-and cobalamin-mediated biodegradation of chloroform in a methanogenic consortium. Biotechnol Bioeng 89(5):539–550

    CAS  Google Scholar 

  • Gupta M, Gupta A, Suidan MT, Sayles GD (1996) Biotransformation rates of chloroform under anaerobic conditions—II. Sulfate reduction. Water Res 30(6):1387–1394

    CAS  Google Scholar 

  • Hanoch R, Shao H, Butler EC (2006) Transformation of carbon tetrachloride by bisulfide treated goethite, hematite, magnetite, and kaolinite. Chemosphere 63(2):323–334

    CAS  Google Scholar 

  • Harkness MR, Bracco AA, Brennan MJ, Deweerd KA, Spivack JL (1999) Use of bioaugmentation to stimulate complete reductive dechlorination of trichloroethene in Dover soil columns. Environ Sci Technol 33:1100–1109

    CAS  Google Scholar 

  • Hashsham SA, Freedman DL (1999) Enhanced biotransformation of carbon tetrachloride by Acetobacterium woodii upon addition of hydroxocobalamin and fructose. Appl Environ Microbiol 65(10):4537–4542

    CAS  Google Scholar 

  • Hashsham SA, Scholze R, Feedman DL (1995) Cobalamin-enhanced anaerobic biotransformation of carbon tetrachloride. Environ Sci Technol 29(11):2856–2863

    CAS  Google Scholar 

  • He JZ, Sung Y, Dollhopf ME, Fathepure BZ, Tiedje JM, Löffler FE (2002) Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. Environ Sci Technol 36(18):3945–3952

    CAS  Google Scholar 

  • He J, Ritalahti KM, Yang K-L, Koenigsberg SS, Löffler FE (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424(6944):62–65

    CAS  Google Scholar 

  • He J, Sung Y, Krajmalnik-Brown R, Ritalahti KM, Löffler FE (2005) Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environ Microbiol 7(9):1442–1450

    CAS  Google Scholar 

  • He J, Holmes VF, Lee PKH, Alvarez-Cohen L (2007) Influence of vitamin B12 and cocultures on the growth of Dehalococcoides isolates in defined medium. Appl Environ Microbiol 73(9):2847–2853

    CAS  Google Scholar 

  • He F, Zhao D, Paul C (2011) Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res 44:2360–2370

    Google Scholar 

  • Heimann AC, Friis AK, Jakobsen R (2005) Effects of sulfate on anaerobic chloroethene degradation by an enriched culture under transient and steady-state hydrogen supply. Water Res 39:3579–3586

    CAS  Google Scholar 

  • Hoelen TP, Reinhard M (2004) Complete biological dehalogenation of chlorinated ethylenes in sulfate containing groundwater. Biodegradation 15:395–403

    CAS  Google Scholar 

  • Holliger C, Schraa G, Stams AJ, Zehnder AJ (1990) Reductive dechlorination of 1, 2-dichloroethane and chloroethane by cell suspensions of methanogenic bacteria. Biodegradation 1(4):253–261

    CAS  Google Scholar 

  • Holliger C, Schraa G, Stams A, Zehnder A (1993) A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl Environ Microbiol 59(9):2991–2997

    CAS  Google Scholar 

  • Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, Vazquez F, Weiss N, Zehnder AJ (1998a) Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra-and trichloroethene in an anaerobic respiration. Arch Microbiol 169(4):313–321

    CAS  Google Scholar 

  • Holliger C, Wohlfarth G, Diekert G (1998b) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22(5):383–398

    CAS  Google Scholar 

  • Hug LA, Beiko RG, Rowe AR, Richardson RE, Edwards EA (2012) Comparative metagenomics of three Dehalococcoides-containing enrichment cultures: the role of the non-dechlorinating community. BMC Genom 13(1):327

    CAS  Google Scholar 

  • Isalou M, Sleep BE, Liss SN (1998) Biodegradation of high concentrations of tetrachloroethene in a continuous flow column system. Environ Sci Technol 32:3579–3585

    CAS  Google Scholar 

  • Jayachandran G, Görisch H, Adrian L (2004) Studies on hydrogenase activity and chlorobenzene respiration in Dehalococcoides sp. strain CBDB1. Arch Microbiol 182(6):498–504

    CAS  Google Scholar 

  • Johnson TL, Scherer MM, Tratnyek PG (1996) Kinetics of halogenated organic compound degradation by iron metal. Environ Sci Technol 30(8):2634–2640

    CAS  Google Scholar 

  • Jones EJP, Voytek MA, Lorah MM, Kirshtein JD (2006) Characterization of a microbial consortium capable of rapid and simultaneous dechlorination of 1,1,2,2-tetrachloroethane and chlorinated ethane and ethene intermediates. Bioremediat J 10(4):153–168

    CAS  Google Scholar 

  • Justicia-Leon SD, Ritalahti KM, Mack EE, Löffler FE (2012) Dichloromethane fermentation by a Dehalobacter sp. in an enrichment culture derived from pristine river sediment. Appl Environ Microbiol 78(4):1288–1291

    CAS  Google Scholar 

  • Kaseros VB, Sleep BE, Bagley DM (2000) Column studies of biodegradation of mixtures of tetrachloroethene and carbon tetrachloride. Water Res 34(17):4161–4168

    CAS  Google Scholar 

  • Keene W, Khalil MAK, Erickson D, McCulloch A, Graedel TE, Lobert JM, Aucott ML, Gong SL, Harper DB, Kleiman G (1999) Composite global emissions of reactive chlorine from anthropogenic and natural sources: reactive Chlorine Emissions Inventory. J Geophys Res Atmos (1984–2012) 104(D7):8429–8440

    CAS  Google Scholar 

  • Kenneke JF, Weber EJ (2003) Reductive dehalogenation of halomethanes in iron- and sulfate-reducing sediments. 1. Reactivity pattern analysis. Environ Sci Technol 37(4):713–720

    CAS  Google Scholar 

  • Kim S, Picardal FW (1999) Enhanced anaerobic biotransformation of carbon tetrachloride in the presence of reduced iron oxides. Environ Toxicol Chem 18(10):2142–2150

    CAS  Google Scholar 

  • Kirschling TL, Gregory KB, Minkley EG Jr, Lowry GV, Tilton RD (2010) Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 44(9):3474–3480

    CAS  Google Scholar 

  • Klečka G, Carpenter C, Gonsior S (1998) Biological transformations of 1, 2-dichloroethane in subsurface soils and groundwater. J Contam Hydrol 34(1):139–154

    Google Scholar 

  • Koenig JC, Lee MJ, Manefield M (2012) Successful microcosm demonstration of a strategy for biodegradation of a mixture of carbon tetrachloride and perchloroethene harnessing sulfate reducing and dehalorespiring bacteria. J Hazard Mater 219:169–175

    Google Scholar 

  • Kohler-Staub D, Leisinger T (1985) Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2. J Bacteriol 162(2):676–681

    CAS  Google Scholar 

  • Koons BW, Baeseman JL, Novak PJ (2001) Investigation of cell exudates active in carbon tetrachloride and chloroform degradation. Biotechnol Bioeng 74(1):12–17

    CAS  Google Scholar 

  • Kriegman-King MR, Reinhard M (1992) Transformation of carbon tetrachloride in the presence of sulfide, biotite, and vermiculite. Environ Sci Technol 26(11):2198–2206

    CAS  Google Scholar 

  • Kriegman-King MR, Reinhard M (1994) Transformation of carbon tetrachloride by pyrite in aqueous solution. Environ Sci Technol 28(4):692–700

    CAS  Google Scholar 

  • Krumholz LR (1997) Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. Int J Syst Bacteriol 47(4):1262–1263

    CAS  Google Scholar 

  • Lampron K, Chiu P, Cha D (2001) Reductive dehalogenation of chlorinated ethenes with elemental iron: the role of microorganisms. Water Res 35(13):3077–3084

    CAS  Google Scholar 

  • Lee W, Batchelor B (2002a) Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite. Environ Sci Technol 36(23):5147–5154

    CAS  Google Scholar 

  • Lee W, Batchelor B (2002b) Abiotic, reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 2. Green rust. Environ Sci Technol 36(24):5348–5354

    CAS  Google Scholar 

  • Lee WJ, Batchelor B (2004) Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing phyllosilicates. Chemosphere 56(10):999–1009

    CAS  Google Scholar 

  • Lee C, Jee YK, Won IL, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42(13):4927–4933

    CAS  Google Scholar 

  • Lee M, Cord-Ruwisch R, Manefield M (2010) A process for the purification of organochlorine contaminated activated carbon: sequential solvent purging and reductive dechlorination. Water Res 44(5):1580–1590

    CAS  Google Scholar 

  • Lee M, Low A, Zemb O, Koenig J, Michaelsen A, Manefield M (2012) Complete chloroform dechlorination by organochlorine respiration and fermentation. Environ Microbiol 14(4):883–894

    CAS  Google Scholar 

  • Lendvay JM, Loffler FE, Dollhopf M, Aiello MR, Daniels G, Fathepure BZ, Gebhard M, Heine R, Helton R, Shi J, Krajmalnik-Brown R, Major CL, Barcelona MJ, Petrovskis E, Hickey R, Tiedje JM, Adriaens P (2003) Bioreactive barriers: a comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environ Sci Technol 37(7):1422–1431

    CAS  Google Scholar 

  • Lewis TA, Morra MJ, Brown PD (1996) Comparative product analysis of carbon tetrachloride dehalogenation catalyzed by cobalt corrins in the presence of thiol or titanium (III) reducing agents. Environ Sci Technol 30(1):292–300

    CAS  Google Scholar 

  • Li Z, Greden K, Alvarez PJJ, Gregory KB, Lowry GV (2010) Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ Sci Technol 44(9):3462–3467

    CAS  Google Scholar 

  • Lien HL, Zhang WX (1999) Transformation of chlorinated methanes by nanoscale iron particles. J Environ Eng Asce 125:1042–1047

    CAS  Google Scholar 

  • Lien HL, Zhang WX (2005) Hydrodechlorination of chlorinated ethanes by nanoscale Pd/Fe bimetallic particles. J Environ Eng Asce 131:4–10

    CAS  Google Scholar 

  • Löffler FE, Sanford RA, Ritalahti KM (2005) Enrichment, cultivation, and detection of reductively dechlorinating bacteria. Environ Microbiol 397:77–111

    Google Scholar 

  • Lorah MM, Olsen LD (1999) Degradation of 1, 1, 2, 2-tetrachloroethane in a freshwater tidal wetland: field and laboratory evidence. Environ Sci Technol 33(2):227–234

    CAS  Google Scholar 

  • Magli A, Rainey FA, Leisinger T (1995) Acetogenesis from dichloromethane by a two-component mixed culture comprising a novel bacterium. Appl Environ Microbiol 61(8):2943–2949

    CAS  Google Scholar 

  • Mägli A, Wendt M, Leisinger T (1996) Isolation and characterization of Dehalobacterium formicoaceticum gen. nov. sp. nov., a strictly anaerobic bacterium utilizing dichloromethane as source of carbon and energy. Arch Microbiol 166(2):101–108

    Google Scholar 

  • Mägli A, Messmer M, Leisinger T (1998) Metabolism of dichloromethane by the strict anaerobe Dehalobacterium formicoaceticum. Appl Environ Microbiol 64(2):646–650

    Google Scholar 

  • Magnuson JK, Stern RV, Gossett JM, Zinder SH, Burris DR (1998) Reductive dechlorination of tetrachloroethene to ethene by a two-component enzyme pathway. Appl Environ Microbiol 64(4):1270–1275

    CAS  Google Scholar 

  • Magnuson JK, Romine MF, Burris DR, Kingsley MT (2000) Trichloroethene reductive dehalogenase fromDehalococcoides ethenogenes: sequence of tceA and substrate range characterization. Appl Environ Microbiol 66(12):5141–5147

    CAS  Google Scholar 

  • Maithreepala RA, Doong RA (2008) Effect of biogenic iron species and copper ions on the reduction of carbon tetrachloride under iron-reducing conditions. Chemosphere 70(8):1405–1413

    CAS  Google Scholar 

  • Maithreepala RA, Doong RA (2009) Transformation of carbon tetrachloride by biogenic iron species in the presence of Geobacter sulfurreducens and electron shuttles. J Hazard Mater 164(1):337–344

    CAS  Google Scholar 

  • Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek S, Hendrickson ER, Starr MG, Payne JA, Buonamici LW (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116

    CAS  Google Scholar 

  • Manchester MJ, Hug LA, Zarek M, Zila A, Edwards EA (2012) Discovery of a trans-dichloroethene-respiring Dehalogenimonas species in the 1,1,2,2-tetrachloroethane-dechlorinating WBC-2 consortium. Appl Environ Microbiol 78(15):5280–5287

    CAS  Google Scholar 

  • Maphosa F, Van Passel MWJ, De Vos WM, Smidt H (2012) Metagenome analysis reveals yet unexplored reductive dechlorinating potential of Dehalobacter sp. E1 growing in co-culture with Sedimentibacter sp. Environ Microbiol Rep 4(6):604–616

    CAS  Google Scholar 

  • Maymó-Gatell X, Tandoi V, Gossett JM, Zinder SH (1995) Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis. Appl Environ Microbiol 61(11):3928–3933

    Google Scholar 

  • Maymó-Gatell X, Chien Y, Gossett JM, Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571

    Google Scholar 

  • Maymó-Gatell X, Anguish T, Zinder SH (1999) Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by “Dehalococcoides ethenogenes” 195. Appl Environ Microbiol 65(7):3108–3113

    Google Scholar 

  • Maymó-Gatell X, Nijenhuis I, Zinder SH (2001) Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by “Dehalococcoides ethenogenes”. Environ Sci Technol 35:516–521

    Google Scholar 

  • Mazur CS, Jones WJ (2001) Hydrogen concentrations in sulfate-reducing estuarine sediments during PCE dehalogenation. Environ Sci Technol 35:4783–4788

    CAS  Google Scholar 

  • McCormick ML, Adriaens P (2004) Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles. Environ Sci Technol 38:1045–1053

    CAS  Google Scholar 

  • McCormick ML, Bouwer EJ, Adriaens P (2002) Carbon tetrachloride transformation in a model iron-reducing culture: relative kinetics of biotic and abiotic reactions. Environ Sci Technol 36(3):403–410

    CAS  Google Scholar 

  • McKinlay JB, Zeikus JG (2004) Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli. Appl Environ Microbiol 70(6):3467–3474

    CAS  Google Scholar 

  • Melendez C, Roman M, Smith G (1993) Biodegradation of Dichloromethane under denitrifying conditions by a waste water microbial community and by pure cultures of Hyphomicrobium strain X. 93rd general meeting, American Society for Microbiology, Session

  • Men Y, Feil H, Verberkmoes NC, Shah MB, Johnson DR, Lee PKH, West KA, Zinder SH, Andersen GL, Alvarez-Cohen L (2012) Sustainable syntrophic growth of Dehalococcoides ethenogenes strain 195 with Desulfovibrio vulgaris Hildenborough and Methanobacterium congolense: global transcriptomic and proteomic analyses. ISME J 6(2):410–421

    CAS  Google Scholar 

  • Meßmer M, Wohlfarth G, Diekert G (1993) Methyl chloride metabolism of the strictly anaerobic, methyl chloride-utilizing homoacetogen strain MC. Arch Microbiol 160(5):383–387

    Google Scholar 

  • Miller E, Wohlfarth G, Diekert G (1997) Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp. strain PCE-S. Arch Microbiol 168(6):513–519

    CAS  Google Scholar 

  • Moe WM, Yan J, Nobre MF, da Costa MS, Rainey FA (2009) Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater. Int J Syst Evol Microbiol 59(11):2692–2697

    CAS  Google Scholar 

  • Muchitsch N, Van Nooten T, Bastiaens L, Kjeldsen P (2011) Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with chlorinated aliphatic hydrocarbons (CAHs). J Contam Hydrol 126(3–4):258–270

    CAS  Google Scholar 

  • Müller JA, Rosner BM, Von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM (2004) Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl Environ Microbiol 70(8):4880–4888

    Google Scholar 

  • Nelson DK, Hozalski RM, Clapp LW, Semmens MJ, Novak PJ (2002) Effect of nitrate and sulfate on dechlorination by a mixed hydrogen-fed culture. Bioremediat J 6:225–236

    CAS  Google Scholar 

  • Nightingale P, Malin G, Liss P (1995) Production of chloroform and other low-molecular-weight halocarbons by some species of macroalgae. Limnol Oceanogr 40:680

    CAS  Google Scholar 

  • Nobre R, Nobre MM (2004) Natural attenuation of chlorinated organics in a shallow sand aquifer. J Hazard Mater 110(1):129–137

    CAS  Google Scholar 

  • Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66(4):1292–1297

    CAS  Google Scholar 

  • Pecher K, Haderlein SB, Schwarzenbach RP (2002) Reduction of polyhalogenated methanes by surface-bound Fe(II) in aqueous suspensions of iron oxides. Environ Sci Technol 36:1734–1741

    CAS  Google Scholar 

  • Penny C, Vuilleumier S, Bringel F (2010) Microbial degradation of tetrachloromethane: mechanisms and perspectives for bioremediation. FEMS Microbiol Ecol 74(2):257–275

    CAS  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton RD, Lowry GV (2007) Stabilization of aqueous zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10:795–814

    Google Scholar 

  • Phenrat T, Kim HJ, Fagerlund F, Illangasekare T, Tilton RD, Lowry GV (2009) Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environ Sci Technol 43(13):5079–5085

    CAS  Google Scholar 

  • Pierson LS III, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86(6):1659–1670

    CAS  Google Scholar 

  • Quinn J, Geiger C, Clausen C, Brooks K, Coon C, O’Hara S, Krug T, Major D, Yoon WS, Gavaskar A, Holdsworth T (2005) Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ Sci Technol 39(5):1309–1318

    CAS  Google Scholar 

  • Rhew RC, Miller BR, Weiss RF (2000) Natural methyl bromide and methyl chloride emissions from coastal salt marshes. Nature 403(6767):292–295

    CAS  Google Scholar 

  • Rosenthal H, Adrian L, Steiof M (2004) Dechlorination of PCE in the presence of Fe0 enhanced by a mixed culture containing two Dehalococcoides strains. Chemosphere 55(5):661–669

    CAS  Google Scholar 

  • Rosner BM, McCarty PL, Spormann AM (1997) In vitro studies on reductive vinyl chloride dehalogenation by an anaerobic mixed culture. Appl Environ Microbiol 63(11):4139–4144

    CAS  Google Scholar 

  • Rossetti S, Aulenta F, Majone M, Crocetti G, Tandoi V (2008) Structure analysis and performance of a microbial community from a contaminated aquifer involved in the complete reductive dechlorination of 1, 1, 2, 2-tetrachloroethane to ethene. Biotechnol Bioeng 100(2):240–249

    CAS  Google Scholar 

  • Sakulchaicharoen N, O’Carroll DM, Herrera JE (2010) Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. J Contam Hydrol 118(3–4):117–127

    CAS  Google Scholar 

  • Scherer MM, Richter S, Valentine RL, Alvarez PJ (2000) Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Crit Rev Microbiol 26(4):221–264

    CAS  Google Scholar 

  • Scheutz C, Durant ND, Hansen MH, Bjerg PL (2011) Natural and enhanced anaerobic degradation of 1, 1, 1-trichloroethane and its degradation products in the subsurface—a critical review. Water Res 45(9):2701–2723

    CAS  Google Scholar 

  • Schink B, Friedrich M (1994) Energetics of syntrophic fatty acid oxidation. FEMS Microbiol Rev 15(2):85–94

    CAS  Google Scholar 

  • Schipp CJ, Marco-Urrea E, Kublik A, Seifert J, Adrian L (2013) Organic cofactors in the metabolism of Dehalococcoides mccartyi strains. Philos Trans R Soc B Biol Sci 368(1616):20120321

    Google Scholar 

  • Scholz-Muramatsu H, Neumann A, Meßmer M, Moore E, Diekert G (1995) Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 163(1):48–56

    CAS  Google Scholar 

  • Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16:2187–2193

    CAS  Google Scholar 

  • Schumacher W, Holliger C (1996) The proton/electron ration of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in” Dehalobacter restrictus”. J Bacteriol 178(8):2328–2333

    CAS  Google Scholar 

  • Shan H, Kurtz HD Jr, Freedman DL (2010) Evaluation of strategies for anaerobic bioremediation of high concentrations of halomethanes. Water Res 44:1317–1328

    CAS  Google Scholar 

  • Shao H, Butler EC (2009) Influence of soil minerals on the rates and products of abiotic transformation of carbon tetrachloride in anaerobic soils and sediments. Environ Sci Technol 43:1896–1901

    CAS  Google Scholar 

  • Sleep BE, Seepersad D, Mo K, Heidorn CM, Hrapovic L, Morrill PL, McMaster ML, Hood ED, Lebron CA, Lollar BS, Major DW, Edwards EA (2006) Biological enhancement of tetrachloroethene dissolution and associated microbial community changes. Environ Sci Technol 40:3623–3633

    CAS  Google Scholar 

  • Smatlak CR, Gossett JM, Zinder SH (1996) Comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture. Environ Sci Technol 30:2850–2858

    CAS  Google Scholar 

  • Song H, Carraway ER (2005) Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions. Environ Sci Technol 39(16):6237–6245

    CAS  Google Scholar 

  • Stromeyer SA, Winkelbauer W, Kohler H, Cook AM, Leisinger T (1991) Dichloromethane utilized by an anaerobic mixed culture: acetogenesis and methanogenesis. Biodegradation 2(2):129–137

    CAS  Google Scholar 

  • Su C, Puls RW, Krug TA, Watling MT, O’Hara SK, Quinn JW, Ruiz NE (2012) A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Res 46(16):5071–5084

    CAS  Google Scholar 

  • Sun B, Griffin BM, Ayala-del-Río HL, Hashsham SA, Tiedje JM (2002) Microbial dehalorespiration with 1, 1, 1-trichloroethane. Science 298(5595):1023–1025

    CAS  Google Scholar 

  • Suyama A, Iwakiri R, Kai K, Tokunaga T, Sera N, Furukawa K (2001) Isolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dehalogenation of tetrachloroethene and polychloroethanes. Biosci Biotechnol Biochem 65(7):1474–1481

    CAS  Google Scholar 

  • Suyama A, Yamashita M, Yoshino S, Furukawa K (2002) Molecular characterization of the PceA reductive dehalogenase of Desulfitobacterium sp. strain Y51. J Bacteriol 184(13):3419–3425

    CAS  Google Scholar 

  • Tandoi V, DiStefano TD, Bowser PA, Gossett JM, Zinder SH (1994) Reductive dehalogenation of chlorinated ethenes and halogenated ethanes by a high-rate anaerobic enrichment culture. Environ Sci Technol 28(5):973–979

    CAS  Google Scholar 

  • Tang S, Edwards EA (2013) Identification of Dehalobacter reductive dehalogenases that catalyse dechlorination of chloroform, 1, 1, 1-trichloroethane and 1, 1-dichloroethane. Philos Trans R Soc B Biol Sci 368(1616):20120318

    Google Scholar 

  • Tang SCN, Lo IMC (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632

    CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2005) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48

    Google Scholar 

  • Tratnyek PG, Johnson TL, Scherer MM, Eykholt GR (1997) Remediating ground water with zero-valent metals: chemical considerations in barrier design. Ground Water Monit Rem 17(4):108–114

    Google Scholar 

  • Van der Zee FP, Cervantes FJ (2009) Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review. Biotechnol Adv 27(3):256–277

    Google Scholar 

  • Van Nooten T, Lieben F, Dries J, Pirard E, Springael D, Bastiaens L (2007) Impact of microbial activities on the mineralogy and performance of column-scale permeable reactive iron barriers operated under two different redox conditions. Environ Sci Technol 41(16):5724–5730

    Google Scholar 

  • Van Nooten T, Springael D, Bastiaens L (2008) Positive impact of microorganisms on the performance of laboratory-scale permeable reactive iron barriers. Environ Sci Technol 42(5):1680–1686

    Google Scholar 

  • Vannelli T, Studer A, Kertesz M, Leisinger T (1998) Chloromethane metabolism byMethylobacterium sp. Strain CM4. Appl Environ Microbiol 64(5):1933–1936

    CAS  Google Scholar 

  • Vogel TM, McCarty PL (1985) Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl Environ Microbiol 49(5):1080–1083

    CAS  Google Scholar 

  • Vogel TM, Criddle CS, McCarty PL (1987) ES&T critical reviews: transformations of halogenated aliphatic compounds. Environ Sci Technol 21(8):722–736

    CAS  Google Scholar 

  • Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156

    CAS  Google Scholar 

  • Watanabe K, Manefield M, Lee M, Kouzuma A (2009) Electron shuttles in biotechnology. Curr Opin Biotechnol 20(6):633–641

    CAS  Google Scholar 

  • Weathers LJ, Parkin GF (2000) Toxicity of chloroform biotransformation to methanogenic bacteria. Environ Sci Technol 34(13):2764–2767

    CAS  Google Scholar 

  • Wei YT, Wu SC, Chou CM, Che CH, Tsai SM, Lien HL (2010) Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: a field case study. Water Res 44(1):131–140

    CAS  Google Scholar 

  • Wild AP, Winkelbauer W, Leisinger T (1995) Anaerobic dechlorination of trichloroethene, tetrachloroethene and 1, 2-dichloroethane by an acetogenic mixed culture in a fixed-bed reactor. Biodegradation 6(4):309–318

    CAS  Google Scholar 

  • Workman DJ, Woods SL, Gorby YA, Fredrickson JK, Truex MJ (1997) Microbial reduction of vitamin B12 by Shewanella alga strain BrY with subsequent transformation of carbon tetrachloride. Environ Sci Technol 31(8):2292–2297

    CAS  Google Scholar 

  • Xiu ZM, Gregory KB, Lowry GV, Alvarez PJJ (2010a) Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Environ Sci Technol 44(19):7647–7651

    CAS  Google Scholar 

  • Xiu ZM, Jin ZH, Li TL, Mahendra S, Lowry GV, Alvarez PJJ (2010b) Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresour Technol 101(4):1141–1146

    CAS  Google Scholar 

  • Yan J, Ritalahti KM, Wagner DD, Löffler FE (2012) Unexpected specificity of interspecies cobamide transfer from Geobacter spp. to organohalide-respiring Dehalococcoides mccartyi strains. Appl Environ Microbiol 78(18):6630–6636

    CAS  Google Scholar 

  • Yan J, Im J, Yang Y, Löffler FE (2013) Guided cobalamin biosynthesis supports Dehalococcoides mccartyi reductive dechlorination activity. Philos Trans R Soc Lond B Biol Sci 368(1616):20120320

    Google Scholar 

  • Yang YY, McCarty PL (1998) Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ Sci Technol 32:3591–3597

    CAS  Google Scholar 

  • Yee LH, Aagaard V, Johnstone A, Lee M, Kjelleberg SJ, Manefield M (2010) Development of a treatment solution for reductive dechlorination of hexachloro-1, 3-butadiene in vadose zone soil. Biodegradation 21(6):947–956

    CAS  Google Scholar 

  • Yi S, Seth EC, Men YJ, Stabler SP, Allen RH, Alvarez-Cohen L, Taga ME (2012) Versatility in corrinoid salvaging and remodeling pathways supports corrinoid-dependent metabolism in Dehalococcoides mccartyi. Appl Environ Microbiol 78(21):7745–7752

    CAS  Google Scholar 

  • Zemb O, Lee M, Low A, Manefield M (2010) Reactive iron barriers: a niche enabling microbial dehalorespiration of 1, 2-dichloroethane. Appl Microbiol Biotechnol 88(1):319–325

    CAS  Google Scholar 

  • Zhang WX, Wang CB, Lien HL (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40:387–395

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Australian Research Council and industry partners (Orica Australia Pty Ltd, Dow Chemicals Ltd and Micronovo Pty Ltd) for funding and for the opportunity to contribute to the removal of chlorinated aliphatic hydrocarbons from subsurface environments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Manefield.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koenig, J., Lee, M. & Manefield, M. Aliphatic organochlorine degradation in subsurface environments. Rev Environ Sci Biotechnol 14, 49–71 (2015). https://doi.org/10.1007/s11157-014-9345-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-014-9345-3

Keywords

Navigation