Skip to main content

Advertisement

Log in

A review on economically adsorbents on heavy metals removal in water and wastewater

  • Reviews
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Heavy metals contamination in water has been an issue to the environment and human health. The persisting contamination level has been observed and concerned by the public due to continuous deterioration of water quality. On the other hand, conventional treatment system could not completely remove the toxic metals in the water, thus alternative purification methods using inexpensive materials were endeavor to improve the current treatment process. Wide ranges of low cost adsorbents were used to remove heavy metal in aqueous solution and wastewater. The low cost adsorbents were usually collected from agricultural waste, seafood waste, food waste, industrial by-product and soil. These adsorbents are readily available in a copious amount. Besides, the pretreatment are not complicated to be conducted on the raw products, which is economically sound for an alternative treatment. The previous studies have provided much evidence of low cost adsorbents’ efficiency in removing metal ions from aqueous solution or wastewater. In this review, several low cost adsorbents in the recent literature have been studied. The maximum adsorption capacity, affecting factors such as pH, contact times, temperature, initial concentration and modified materials were revised and summarized in this review for further reference. Comparisons of the adsorbent between the modified and natural products were also demonstrated to provide a clear understanding on the kinetic uptake of the selected adsorbents. Some of the natural adsorbents appeared as good heavy metal removal, while some were not and require further modifications and improvements to enhance the adsorption capacity. SWOT analysis (strength, weakness, opportunities, threat) was also performed on the low cost adsorbents to identify the advantages of using low cost adsorbents and solve the weaknesses encountered by the utilization of low cost materials. This tool helps to determine the potential quality of low cost materials in the application for water and wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abdulrasaq OO, Basiru OG (2010) Removal of copper (II), iron (III) and lead (II) ions from mono-component simulated waste effluent by adsorption on coconut husk. Afr J Environ Sci Technol 4(6):382–387

    CAS  Google Scholar 

  • Ahmad M, Usman ARA, Lee SS, Kim S-C, Joo J-H, Yang JE, Ok YS (2012) Eggshell and coral wastes as low cost adsorbents for the removal of Pb2+, Cd2+and Cu2+ from aqueous solutions. J Ind Eng Chem 18:198–204

    CAS  Google Scholar 

  • Alaerts GJ, Jitjaturant V, Kelderman P (1989) Use of coconut shell based activated carbon for chromium(VI) removal. Water Sci Technol 21(12):1701–1704

    CAS  Google Scholar 

  • Aliabadi M, Morshedzadeh K, Soheyli H (2006) Removal of hexavelant chromium from aqueous solution by lignocellulosic solid wastes. Int J Environ Sci Tech 3(3):321–325

    CAS  Google Scholar 

  • Almasi A, Omidi M, Khodadadian M, Khamutian R, Gholivand MB (2012) Lead(II) and cadmium(II) removal from aqueous using processed walnut shell: kinetic and equilibrium study. Toxicol Environ Chem 94(4):660–671

    CAS  Google Scholar 

  • Alshaebi FA, Wan Yacoob WZ, Shamsuldin AR (2009) Sorption on zero-valent Iron (ZVI) for arsenic removal. Eur J Sci Res 33(2):214–219

    Google Scholar 

  • Al-Zboon K, Al-Harahsheh MS, Hani FB (2011) Fly ash-based geopolymer for Pb removal from aqueous solution. J Hazard Mater 188:414–421

    CAS  Google Scholar 

  • Amuda OS, Giwa AA, Bello IA (2007) Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem Eng J 36:174–181

    CAS  Google Scholar 

  • Aredes S, Klein B, Pawlik M (2012) The removal of arsenic from water using natural iron oxide minerals, J Cleaner Prod 1–6. doi:10.1016/j.jclepro.2012.01.02

  • Arunlertaree C, Kaewsomboon W, Kumsopa A, Pokethitiyook P, Panyawathanakit P (2007) Removal of lead from battery manufacturing wastewater by egg shell. Songklanakarin J Sci Technol 29(3):857–868

    Google Scholar 

  • Asgari G, Rahmani AR, Faradmal J, Mohammadi AMS (2012) Kinetic and isotherm of hexavalent chromium adsorption onto nano hydroxyapatite. J Res Health Sci 12(1):45–53

    Google Scholar 

  • Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Wat Res 33(11):2469–2479

    CAS  Google Scholar 

  • Basu A, Mahata J, Gupta S, Giri AK (2001) Genetic toxicology of a paradoxical human carcinogen, arsenic: a review. Mutat Res 488:171–194

    CAS  Google Scholar 

  • Bhuvaneshwari S, Sruthi D, Sivasubramanian V, Kanthimathy K (2012) Regeneration of chitosan after heavy metal sorption. J Sci Ind Res 71:266–269

    CAS  Google Scholar 

  • Biney CA, Ameyibor E (1992) Trace metal concentrations in the pink shrimp, Penaeus notialis from the coast of Ghana. Water Air Soil Pollut 63:273–279

    CAS  Google Scholar 

  • Bothe JV, Brown PW (1999) Arsenic immobilization by calcium arsenate formation. Environ Sci Technol 33:3806–3811

    CAS  Google Scholar 

  • Cao J, Zhang WX (2006) Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles. J Hazard Mater 132:213–219

    CAS  Google Scholar 

  • Chakraborty S, Chowdhury S, Saha PD (2011) Adsorption of crystal violet from aqueous solution onto NaOH-modified rice husk. Carbohydr Polym 86:1533–1541

    Google Scholar 

  • Chakraborty S, Chowdhury S, Saha PD (2012) Batch removal of crystal violet from aqueous solution by H2SO4 modified sugarcane bagasse: equilibrium, kinetic, and thermodynamic profile. Sep Sci Technol 47(13):1898–1905

    CAS  Google Scholar 

  • Chamarthy S, Seo CW, Marshall WE (2001) Adsorption of selected toxic metals by modified peanut shells. J Chem Technol Biotechnol 76:593–597

    CAS  Google Scholar 

  • Champagne P, Li C (2009) Use of Sphagnum peat moss and crushed mollusk shells in fixed bed columns for the treatment of synthetic landfill leachate. J Mater Cycles Waste Manag 11:339–347

    CAS  Google Scholar 

  • Chang K-L, Hsieh J-F, Ou B-M, Chang M-H, Hsieh W-Y, Lin J-H, Huang P-J, Wong K-F, Chen S-T (2012) Adsorption studies on the removal of an endocrine-disrupting compound (Bisphenol A) using activated carbon from rice straw agricultural waste. Sep Sci Technol 47:1514–1521

    CAS  Google Scholar 

  • Chaudhuri M, Azizan NK (2011) Adsorptive removal of chromium(VI) from aqueous solution by an agricultural waste-based activated carbon. Water Air Soil Pollut 223(4):1765–1771

    Google Scholar 

  • Chaudhuri M, Mohamed Kutty SR, Yusop SH (2010) Copper and cadmium adsorption by activated carbon prepared from coconut coir. Nat Environ Pollut Technol 9(1):25–28

    CAS  Google Scholar 

  • Chen G, Guan S, Zeng G, Li X, Chen A, Shang C, Zhou Y, Li H, He J (2012) Cadmium removal and 2, 4-dichlorophenol degradation by immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO2 nanoparticles. Appl Microbial Biotechnol 97(7):3149–3157

    Google Scholar 

  • Chiban M, Zerbet M, Carja G, Sinan F (2012) Application of low-cost adsorbents for arsenic removal: a review. J Environ Chem Ecotoxicol 4(5):91–102

    Google Scholar 

  • Choi J, Lee JY, Yang JS (2007) Comparison of Fe and Mn removal using treatment agents for acid mine drainage. World Acad Sci, Eng Technol 28:186–188

    Google Scholar 

  • Cimino G, Passerini A, Toscano G (2000) Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell. Water Res 34(11):2955–2962

    CAS  Google Scholar 

  • Dahbi S, Azzi M, Saib N, de la Guardia M, Faure R, Durand R (2002) Removal of trivalent chromium from tannery waste waters using bone charcoal. Anal Bioanal Chem 374:540–546

    CAS  Google Scholar 

  • Das D, Chatterjee A, Mandal BK, Samanta G, Chakraborty D (1995) Arsenic in groundwater in six districts of West Bengal, India: the biggest arsenic calamity in the world. Analyst 120:917–924

    CAS  Google Scholar 

  • Dave PN, Pandey N, Thomas H (2012) Adsorption of Cr(VI) from aqueous solutions on tea waste and coconut husk. Indian J Chem Technol 19:111–117

    CAS  Google Scholar 

  • Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157:220–229

    CAS  Google Scholar 

  • Demirbas E, Kobya M, Oncel S, Sencan S (2002) Removal of Ni(II) from aqueous solution by adsorption onto hazelnut shell activated carbon: equilibrium studies. Bioresour Technol 84:291–293

    CAS  Google Scholar 

  • Demirbas E, Kobya M, Senturk E, Ozkan T (2004) Adsorption kinetics for the removal of chromium(VI) from aqueous solutions on the activated carbons prepared from agricultural wastes. Water SA 30:533–540

    CAS  Google Scholar 

  • Djukic′ A, Jovanovic′ U, Tuvic′ T, Andric′ V, Novakovic′ JG, Ivanovic′ N, Matovic′ L (2013) The potential of ball-milled serbian natural clay for removal of heavy metal contaminants from wastewaters: simultaneous sorption of Ni, Cr, Cd and Pb ions. Cerams Int 39(6):7138–7178

    Google Scholar 

  • Du Y, Zhu L, Shan G (2012) Removal Cd2+ from contaminated water by nano-sized aragonite mollusk shell and the competition of coexisting metal ions. J Colloid Interface Sci 367:378–382

    CAS  Google Scholar 

  • Dzikiewicz M (2000) Activities in nonpoint pollution control in rural areas of Poland. Ecol Eng 14:429–434

    Google Scholar 

  • Eisazadeh A, Eisazadeh H, Kassim KA (2013) Removal of Pb(II) using polyaniline composites and iron oxide coated natural sand and clay from aqueous solution. Synth Met 171:56–61

    CAS  Google Scholar 

  • El Kinawy OS, El Moneim NA, El Haron DE (2012) The removal of heavy metal ions from wastewater using jojoba oil in a new technique. Energ Sources Part A 34(13):1169–1177

    Google Scholar 

  • El-Eswed B, Alshaaer M, Yousef RI, Hamadneh I, Khalili F (2012) Adsorption of Cu(II), Ni(II), Zn(II), Cd(II) and Pb(II) onto kaolin/zeolite based-geopolymers. Adv Mat Phys Chem 2(4b):119–125

    Google Scholar 

  • Farinella NV, Matos GD, Arruda MAZ (2007) Grape bagasse as a potential biosorbent of metals in effluent treatments. Bioresour Technol 98:1940–1946

    CAS  Google Scholar 

  • Farinella NV, Matos GD, Lehmann EL, Arruda MAZ (2008) Grape bagasse as an alternative natural adsorbent of cadmium and lead for effluent treatment. J Hazard Mater 154:1007–1012

    CAS  Google Scholar 

  • Ferro-Garcia MA, Rivea-Utrilla J, Rodriguez-Gordillo J, Bautista-Tolelo I (1988) Adsorption of zinc, cadmium, and copper on activated carbons obtained from agricultural by-products. Carbon 26(3):363–373

    CAS  Google Scholar 

  • Foo KY, Hameed BH (2011) Utilization of rice husks as a feedstock for preparation of activated carbon by microwave induced KOH and K2CO3 activation. Bioresour Technol 102:9814–9817

    CAS  Google Scholar 

  • Gerritse RG (1996) Column-and catchment-scale transport of cadmium: effect of dissolved organic matter. J Contam Hydrol 22:145–163

    CAS  Google Scholar 

  • Gheju M, Iovi A, Balcu I (2008) Hexavalent chromium reduction with scrap iron in continuous flow system. Part 1: effect of feed solution pH. J Hazard Mater 153:655–662

    CAS  Google Scholar 

  • Grover VA, Hu J, Engates KE, Shipley HJ (2012) Adsorption and desorption of bivalent metals of hematite nanoparticles. Environ Toxicol Chem 31(1):86–92

    CAS  Google Scholar 

  • Gupta VK, Suhas (2009) Application of low cost adsorbents for dye removal—a review. J Environ Manage 90:2313–2342

    CAS  Google Scholar 

  • Hadi AG (2012) Adsorption of Cd(II) ions by synthesize chitosan from fish shells. British J Sci 5(2):33–38

    Google Scholar 

  • Hamadi NK, Chen XD, Farid MM, Lu MGQ (2001) Adsorption kinetics for the removal of chromium(VI) from aqueous solution by adsorbents derived from used tyres and sawdust. Chem Eng J 84(2):95–105

    CAS  Google Scholar 

  • Hashem MA (2007) Adsorption of lead ions from aqueous solution by okra wastes. Int J Phys Sci 2(7):178–184

    Google Scholar 

  • Hassan SSM, Awwad NS, Aboterika AHA (2008) Removal of mercury (II) from wastewater using camel bone charcoal. J Hazard Mater 154:992–997

    Google Scholar 

  • Helios-Rybicka E, Wójcik R (2012) Competitive sorption/desorption of Zn, Cd, Pb, Ni, Cu, and Cr by clay-bearing mining wastes. Appl Clay Sci 65–66:6–13

    Google Scholar 

  • Hossain MA, Ngo HH, Guo WS, Nguyen TV (2012) Removal of copper from water by adsorption onto banana peel as bioadsorbent. Int J of GEOMATE 2(2):227–234

    Google Scholar 

  • Hsien T-Y, Liu Y-L (2012) Desorption of cadmium from porous chitosan beads. Adv Desalination. doi:10.5772/50142

    Google Scholar 

  • Ideriah TJK, David OD, Ogbonna DN (2012) Removal of heavy metal ions in aqueous solutions using palm fruit fibre as adsorbent. J Environ Chem Ecotoxicol 4(4):82–90

    CAS  Google Scholar 

  • Ismail FA, Aris AZ, Latif PA (2013) Dynamic behaviour of Cd2+ adsorption in equilibrium batch studies by CaCO3–rich Corbicula fluminea shell. Environ Sci Pollut Res. doi:10.1007/s11356-013-1906-4

    Google Scholar 

  • Issabayeva G, Aroua MK, Sulaiman NM (2010) Study on palm shell activated carbon adsorption capacity to remove copper ions from aqueous solutions. Desalination 262:94–98

    CAS  Google Scholar 

  • Jain M, Garg VK, Kadirvelu K (2013) Chromium removal from aqueous system and industrial wastewater by agricultural wastes. Bioremediat J 17(1):30–39

    CAS  Google Scholar 

  • Javadi N, Raygan SH, Seyyed Ebrahimi SA (2012) Production of nanocrystalline magnetite for adsorption of Cr(VI) ions, 2nd international conference on ultrafine grained nanostructured materials (UFGNSM). World Scientific Publishing Company, Int J Mod Phys: Conference Series 5:771–783

  • Jiang YN, Ruan HD, Lai SY, Lee CH, Yu CF, Wu Z, Chen X, He S (2013) Recycling of solid waste material in Hong Kong: I. Properties of modified clay mineral waste material and its application for removal of cadmium in water. Earth Sci 2(2):40–46

    Google Scholar 

  • Jing C, Korfiatis GP, Meng X (2003) Immobilization mechanisms of arsenate in iron hydroxide sludge stabilized with cement. Environ Sci Technol 37:5050–5056

    CAS  Google Scholar 

  • Johan NA, Kutty SRM, Isa MH, Muhamad NS, Hashim H (2011) Adsorption of copper by using microwave incinerated rice husk ash (MIRHA). Int J Civil Environ Eng 3(3):211–215

    Google Scholar 

  • Kadimpati KK, Mondithoka KP, Bheemaraju S, Challa VRM (2012) Entrapment of marine microalga, isochrysis galbana, for biosorption of Cr(III) from aqueous solution: isotherms and spectroscopic characterization. Appl Water Sci. doi:10.1007/sl3201-012-0062-1

    Google Scholar 

  • Kakalanga SJ, Jabulani XB, Olutoyin OB, Utieyin OO (2012) Screening of agricultural waste for Ni(II) adsorption: kinetics, equilibrium and thermodynamic studies. Int J Phys Sci 7(17):2525–2538

    CAS  Google Scholar 

  • Karadede H, Unlu E (1999) Concentrations of some heavy metals in water, sediment and fish species from the Ataturk Dam Lake (Euphrates), Turkey. Chemosphere 41:1371–1376

    Google Scholar 

  • Karthikeyan T, Rajgopal S, Miranda LR (2005) Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. J Hazard Mater B124:192–199

    Google Scholar 

  • Kim K-R, Lee B-T, Kim K-W (2011) Arsenic stabilization in mine tailing using nano-sized magnetite and zero valent iron with enhancement of mobility by surface coating. J Geochem Explor. doi:10.1016/j.gexplo.2011.07.002

    Google Scholar 

  • Kırbıyık Ç, Kılıç M, Çepelioğullar Ö, Pütün AE (2012) Use of sesame stalk biomass for the removal of Ni(II) and Zi(II) from aqueous solutions. Water Sci Technol 66(2):231–238

    Google Scholar 

  • Kobya M (2004) Removal of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies. Bioresour Technol 91(3):317–321

    CAS  Google Scholar 

  • Kobya M, Demirbas E, Senturk E, Ince M (2005) Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour Technol 96:1518–1521

    CAS  Google Scholar 

  • Krishnan KA, Anirudhan TS (2003) Removal of cadmium(II) from aqueous solutions by steamactivated sulphurised carbon prepared from sugar-cane bagasse pith: kinetic and equilibrium studies. Water SA 29(2):147–156

    CAS  Google Scholar 

  • Kumar PS, Ramalingam S, Abhinaya RV, Kirupha SD, Murugesan M, Sivanesan S (2012) Adsorption of metal ions onto the chemically modified agricultural waste. Clean-Soil, Air, Water 40(2):188–197

    CAS  Google Scholar 

  • Kurniawan TA, Chan GYS, Lo W-H, Babel S (2006) Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118(1–2):83–98

    Google Scholar 

  • Lee M-Y, Park JM, Yang J-W (1997) Micro precipitation of lead on the surface of crab shell particles. Process Biochem 32(8):671–677

    CAS  Google Scholar 

  • Lee S-M, Tiwari D, Choi K-M, Yang J-K, Chang Y–Y, Lee H-D (2009) Removal of Mn(II) from aqueous solutions using manganese-coated sand samples. J Chem Eng Data 54(6):1823–1828

    CAS  Google Scholar 

  • Li XQ, Cao J, Zhang WX (2008) Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): a study with high-resolution X-ray photoelectron spectroscopy (HR-XPS). Ind Eng Chem Res 47:2131–2139

    CAS  Google Scholar 

  • Li SJ, Li TL, Xiu ZM, Jin ZH (2010a) Reduction and immobilization of chromium (VI) by nanoscale Fe0 particles supported on reproducible PAA/PVDF membrane. J Environ Monit 12:1153–1158

    CAS  Google Scholar 

  • Li YS, Church JS, Woodhead AL, Moussa F (2010b) Preparation and characterization of silica coated iron oxide magnetic nano-particles. Spectrochim Acta, Part A 76:484–489

    Google Scholar 

  • Li YC, Jin ZH, Li TL, Li SJ (2011) Removal of hexavalent chromium in soil and groundwater by supported nano zero-valent iron on silica fume. Water Sci Technol 63:2781–2787

    CAS  Google Scholar 

  • Li Q, Wang Q, Chai L, Qin W (2012a) Cadmium (II) adsorption on esterified spent grain: equilibrium modeling and possible mechanisms. Chem Eng J 197:173–180

    CAS  Google Scholar 

  • Li Y, Jin Z, Li T, Ziu Z (2012b) One-step synthesis and characterization of core-shell Fe@SiO2 nanocomposite for Cr(VI) reduction. Sci Total Environ 421–422:260–266

    Google Scholar 

  • Lim AP, Aris AZ (2013) A novel approach for the adsorption of cadmium ions in aqueous solution by dead calcareous skeletons. Desalination Water Treat. doi:10.1080/19443994.2013.798843

    Google Scholar 

  • Lim LBL, Priyantha N, Tennakoon DTB, Dahri MK (2012) Biosorption of cadmium(II) and copper(II) ion from aqueous solution by core of Artocarpus odoratissimus. Environ Sci Pollut Res. doi:10.1007/s11356-012-0831-2

    Google Scholar 

  • Liu Y, Sun C, Xu J, Li Y (2009) The use of raw and acid-pretreated bivalve mollusk shells to remove metals from aqueous solutions. J Hazard Mater 168:156–162

    CAS  Google Scholar 

  • Liu TY, Zhao L, Sun DS, Tan X (2010a) Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater. J Hazard Mater 184:724–730

    CAS  Google Scholar 

  • Liu Q-S, Zheng T, Li N, Wang P, Abulikemu G (2010b) Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue. Appl Surf Sci 256:3309–3315

    CAS  Google Scholar 

  • Liu TY, Zhao L, Wang ZL (2012) Removal of hexavalent chromium from wastewater by Fe0-nanoparticles-chitosan composite beads: characterization, kinetics and thermodynamics. Water Sci Technol 66(5):1044–1051

    CAS  Google Scholar 

  • Martinez-Juarez VM, Cardenas-Gonzalez JF, Torre-Bouscoulet ME, Acosta-Rodriguez I (2012) Biosorption of Mercury(II) from aqueous solutions onto fungal biomass. Bioinorg Chem Appl. doi:10.1155/2012/156190

    Google Scholar 

  • Matusik J, Bajda T (2013) Immobilization and reduction of hexavalent chromium in the interlayer space of positively charged kaolites. J Colloid Interface Sci 398:74–81

    CAS  Google Scholar 

  • Mohanty K, Jha M, Meikap V, Biswas MN (2005) Removal of chromium(VI) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride. Chem Eng Sci 60(11):3049–3059

    CAS  Google Scholar 

  • Moon DH, Wazne M, Yoon I-H, Grubb DG (2008) Assessment of cement kiln dust (CKD) for stabilization/solidification (S/S) of arsenic contaminated soils. J Hazard Mater 159:512–518

    CAS  Google Scholar 

  • Moon DH, Kim KW, Yoon IH, Grubb DG, Shin DY, Cheong KH, Choi HI, Ok YS, Park JH (2011) Stabilization of arsenic-contaminated mine tailings using natural and calcined oyster shells. Environ Earth Sci 64:597–605

    Google Scholar 

  • Moreno-Pirajan JC, Giraldo L (2012) Heavy metal ions adsorption from wastewater using activated carbon from orange peel. E-J Chem 9(2):926–937

    CAS  Google Scholar 

  • Nomanbhay SM, Palanisamy K (2005) Removal of heavy metal from industrial wastewater using chitosan coated oil palm charcoal. Electron J Biotechnol Biotechnol 8(1):43–53

    CAS  Google Scholar 

  • Ok YS, Oh SE, Ahmad M, Hyun S, Kim KR, Moon DH, Lee SS, Lim KJ, Jeon WT, Yang JE (2010) Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environ Earth Sci 61:1301–1308

    CAS  Google Scholar 

  • Olu-owolabi BI, Pputu OU, Adebowale KO, Ogunsolu O, Olujimi OO (2012) Biosorption of Cd2+ and Pb2+ ions onto mango stone and cocoa pod waste: kinetic and equilibrium studies. Sci Res Essays 7(15):1429–1614

    Google Scholar 

  • Omri A, Benzina M (2013) Adsorption characteristics of silver ions onto activated carbon prepared from almond shell. Desalination Water Treat 51:2317–2326

    CAS  Google Scholar 

  • Owlad M, Aroua MK, Daud WMAW (2010) Hexavalent chromium adsorption n impregnated palm shell activated carbon with polyethylenemine. Bioresour Technol 101(14):5098–5103

    CAS  Google Scholar 

  • Pal P, Chakraborty S, Roy M (2012) Arsenic separation by a membrane-integrated hybrid treatment system: modeling, simulation, and techno-economic evaluation. Sep Sci Technol 47:1091–1101

    CAS  Google Scholar 

  • Panthi SR, Wareham DG (2011) Removal of arsenic from water using the adsorbent: New Zealand iron-sand. J Environ Sci Health, Part A 46(13):1533–1538

    CAS  Google Scholar 

  • Park S-J, Jang Y-S, Shim J-W, Ryu S-K (2003) Studies on pore structures and surface functional groups of pitch-based activated carbon fibers. J Colloid Interface Sci 260(2):259–264

    CAS  Google Scholar 

  • Park HJ, Jeong SW, Yang JK, Kim BG, Lee SM (2007) Removal of heavy metals using waste eggshell. J Environ Sci 19:1436–1441

    CAS  Google Scholar 

  • Patil YB (2012) Development of a low-cost industrial waste treatment technology for resource conservation—an urban case study with gold-cyanide emanated from SMEs. Procedia-Social Behav Scie 37:379–388

    Google Scholar 

  • Patterson JW, Allen HE, Scala JJ (1977) Carbonate precipitation for heavy metals pollutants. J (Water Pollut Control Federation) 49(12):2397–2410

    CAS  Google Scholar 

  • Periasamy K, Namasivayam C (1996) Removal of copper(II) by adsorption onto peanut hull carbon from water and copper plating industry wastewater. Chemosphere 32(4):769–789

    CAS  Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

    CAS  Google Scholar 

  • Pontoni L, Fabbricino M (2012) Use of chitosan and chitosan-derivatives to remove arsenic from aqueous solutions—a mini review. Carbohydr Res. doi:10.1016/j.carres.2012.03.042

    Google Scholar 

  • Praveena SM, Aris AZ (2009) A review of groundwater in islands using SWOT analysis. World Rev Sci Technol Sust Dev 6(2):186–203

    Google Scholar 

  • Prieto-Rodríguez L, Oller I, Klamerth N, Agüera A, Rodríguez EM, Malato S (2013) Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Res 47(4):1521–1528

    Google Scholar 

  • Quintela S, Villaran MC, Lopez De Armentia I, Elenjalde E (2012) Ochratoxin A removal from red wine by several oenological fining agents: bentonite, egg albumin, allergen-free adsorbents, chitin and chitosan. Food Addit Contam: Part A 29(7):1168–1174

    CAS  Google Scholar 

  • Rahman MA, Rahman MA, Samad A, Alam AMS (2008) Removal of arsenic with oyster shell: experimental measurements. Pak J Anal Environ Chem 9(2):69–77

    CAS  Google Scholar 

  • Reddy KJ, McDonald KJ, King H (2013) A novel arsenic removal process for water using cupric oxide nanoparticles. J Colloid Interface Sci 397:96–102

    CAS  Google Scholar 

  • Rehman R, Kanwal F, Anwar T, Mahmud T (2011) Adsorption studies of cadmium(II) using novel composites of polyaniline with rice husk and saw dust of Eucalyptus camaldulensis. EJ EAF Chem 10(10):2972–2985

    Google Scholar 

  • Saifuddin MN, Kumaran P (2005) Removal of heavy metal from industrial waste water using Chitosan coated oil palm shell charcoal. Environ Biol 8(1):1–13

    Google Scholar 

  • Sanchez AG, Ayuso EA, Blas JD (1999) Sorption f heavy metals from industrial waste water by low-cost mineral silicates. Clay Miner 34:469–477

    CAS  Google Scholar 

  • Saravanane R, Sundararajan T, Sivamurthy Reddy S (2001) Chemically modified low cost treatment for heavy metal effluent management. Environ Manag Health 12(2):215–224

    Google Scholar 

  • Sarmani S (1989) The determination of heavy metals in water, suspended materials and sediments from Langat River, Malaysia. Hydrobiologia 176(177):233–238

    Google Scholar 

  • Sdiri A, Higashi (2012) Simultaneous removal of heavy metals from aqueous solution by natural limestones. Appl Water Sci. doi:10.1007/s13201-012-0054-1

    Google Scholar 

  • Seco-Reigosa N, Peña-Rodríguez S, Nóvoa-Muñoz JC, Arias-Estévez M, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E, Núñez-Delgado A (2012) Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture. Environ Sci Pollut Res. doi:10.1007/s11356-012-1192-6

    Google Scholar 

  • Selomulya C, Meeyoo V, Amal R (1999) Mechanisms of Cr(VI) removal from water by various types of activated carbons. J Chem Technol Biotechnol 74(3):111–122

    CAS  Google Scholar 

  • Sen TK, Mohammod M, Maitra S, Dutta BK (2010) Removal of cadmium from aqueous solution using castor seed hull: a kinetic and equilibrium study. Clean-Soil, Air, Water 38(9):850–858

    CAS  Google Scholar 

  • Sharma YC, Uma SinghSN, Paras GodedF (2007) Fly ash for the removal of Mn(II) from aqueous solutions and wastewaters. Chem Eng J 132:319–323

    CAS  Google Scholar 

  • Singh TS, Pan KK (2006) Solidification/stabilization of arsenic containing solid wastes using portland cement, fly ash and polymeric materials. J Hazard Mater B131:29–36

    Google Scholar 

  • Singh D, Gupta R, Tiwari A (2012) Potential of duckweed (Lemna minor) for removal of lead from wastewater by phytoremediation. J Pharm Res 5(3):1578–1582

    Google Scholar 

  • Singha B, Das SK (2011) Biosoprtion of Cr(VI) from aqueous solutions: kinetics, equilibrium, thermodynamics and desorption studies. Colloids Surfaces B:Biointerfaces 84:221–232

    CAS  Google Scholar 

  • Sud D, Mahajan G, Kaur MP (2008) Agricultural waste materials as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresour Technol 99:6017–6027

    CAS  Google Scholar 

  • Sugashini S, Begum KMMS (2013) Optimization using central composite design (CCD) for the biosorption of Cr(VI) ions by cross linked chitosan carbonized rice husk (CCACR). Clean Techn Environ Policy 15:293–302

    CAS  Google Scholar 

  • Suteu D, Bilba D, Aflori M, Doroftei F, Lisa G, Badeanu M, Malutan T (2012) The seashell wastes as biosorbent for reactive dye removal from textile effluents. Clean-Soil, Air, Water 40(2):198–205

    CAS  Google Scholar 

  • Tan WT, Ooi ST, Lee CK (1993) Removal of chromium (VI) from solution by coconut husk and palm pressed fibres. Environ Technol 14(3):277–282

    CAS  Google Scholar 

  • Tandon OK, Shukla RC, Singh SB (2013) Removal of arsenic (III) from water with clay supported zero valent iron nanoparticles synthesized with the help of tea liquor. Ind Eng Chem Res. doi:10.1021/ie400702k

    Google Scholar 

  • Tang W, Li Q, Gao S, Shang JK (2011) Arsenic (III, V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method. J Hazard Mater 192:131–138

    CAS  Google Scholar 

  • Tseng RL, Tseng SK, Wu FC (2006) Preparation of high surface area carbons from Corncob with KOH etching plus CO2 gasification for the adsorption of dyes and phenols from water. Coll Surf A: Physicochem Eng Asp 279:69–78

    CAS  Google Scholar 

  • Tudor HEA, Gryte CC, Harri CC (2006) Seashells: detoxifying agents for metal-contaminated waters. Water Air Soil Pollut 173:209–242

    CAS  Google Scholar 

  • UNESCAP (1999) Integrating environmental consideration into economic policy making process: background readings, vol 1. Institional arrangement and mechanism at national level (ST/ESCAP/1944)

  • UNESCAP (2000) Integrating environmental consideration into economic policy making: institutional issues. (ST/ESCAP/1990)

  • Uzun I, Güzel F (2000) Adsorption of some heavy metal ions from aqueous solution by activated carbon and comparison of percent adsorption results of activated carbon with those of some other adsorbents. Turk J Chem 24:291–297

    CAS  Google Scholar 

  • Vadahanambi S, Lee S-H, Kim WJ, Oh IK (2013) Arsenic removal from contaminated water using three-dimensional grapheme-carbon nanotube-iron oxide nanostructures. Environ Sci Technol. doi:10.1021/es401389g

    Google Scholar 

  • Vázquez G, Freire MS, González-Alvarez J, Antorrena G (2009) Equilibrium and kinetic modelling of the adsorption of Cd2+ ions onto chestnut shell. Desalination 249:855–860

    Google Scholar 

  • Vázquez G, Mosquera O, Freire MS, Antorrena G, González-Álvarez J (2012) Alkaline pre-treatment of waste chestnut shell from a food industry to enhance cadmium, copper, lead and zinc ions removal. Chem Eng J 184:147–155

    Google Scholar 

  • Vieira MGA, de Almeida Neto AF, Carlos da Silva MG, Nobrega CC, Melo Filho AA (2012) Characterization and use of in natura and calcined rice husks for biosorption of heavy metals ions from aqueous effluents. Braz J Chem Eng 29(03):619–633

    CAS  Google Scholar 

  • Vijayaraghavan K, Jegan J, Palanivelu K, Velan M (2004) Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column. J Hazard Mater B113:223–230

    Google Scholar 

  • Villaescusa I, Fiol N, Martinez M, Miralles N, Poch J, Serarol J (2004) Removal of copper and nikel ions from aqueous solutions by grape stalks wastes. Water Res 38:992–1002

    CAS  Google Scholar 

  • Wang S, Wei M, Huang Y (2013) Biosorption of multifold toxic heavy metal ions from aqueous water onto food residues eggshell membrane functionalized with ammonium thioglycolate. J Agric Food Chem. doi:10.1021/jf4003939

    Google Scholar 

  • Wantala K, Sthiannopkao S, Srinameb B-O, Grisdanurak N, Kim K-W, Han S (2012) Arsenic adsorption by Fe loaded on RH-MCM-41 synthesized from rice husk silica. J Environ Eng ASCE 138:119–128

    CAS  Google Scholar 

  • Wilson JA, Pulford ID, Thomas S (2003) Sorption of Cu and Zn by bone charcoal. Environ Geochem Health 25:51–56

    CAS  Google Scholar 

  • Woolard CD, Petrus K, Van der Horst M (1999) The use of a modified fly ash as an adsorbent for lead. Water SA 26(4):531–536

    Google Scholar 

  • Wu Y, Yilihan P, Cao J, Jin Y (2013) Competitive adsorption of Cr(VI) and Ni (II) onto coconut shell activated carbon in single and binary systems. Water Air Soil Pollut 224:1662

    Google Scholar 

  • Xu YH, Zhao DY (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 4:2101–2108

    Google Scholar 

  • Yadanaparthi SKR, Graybill D, Wandruszka RV (2009) Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters. J Hazard Mater 171:1–15

    CAS  Google Scholar 

  • Yahaya NKEM, Mohamed Latiffa MF, Abustana I, Bellob OS, Ahmad MA (2010) Effect of preparation conditions of activated carbon prepared from rice husk by CO2 activation for removal of Cu (II) from aqueous solution. Int J Eng Technol 10(06):47–51

    Google Scholar 

  • Yeddou N, Bensmaili A (2007) Equilibrium and kinetic modeling of iron adsorption by eggshells in a batch system: effect of temperature. Desalination 206:127–134

    CAS  Google Scholar 

  • Yoon GL, Kim BT, Kim BO, Han SH (2003) Chemical-mechanical characteristics of crushed oyster shells. Waste Manage 23:825–834

    CAS  Google Scholar 

  • Yousef RI, El-Eswed B, Alshaaer M, Khalili F, Khoury H (2009) The influence of using Jordanian natural zeolite on the adsorption, physical, and mechanical properties of geopolymers products. J Hazard Mater 165:379–387

    CAS  Google Scholar 

  • Zahra N (2012) Lead removal from water by low cost adsorbents: a review. Pak J Anal Environ Chem 13(1):01–08

    CAS  Google Scholar 

  • Zhao Y, Yang S, Ding D, Chen J, Yang Y, Lei Z, Feng C, Zhang Z (2013) Effective adsorption of Cr(VI) from aqueous solution using natural Akadama clay. J Colloid Interface Sci 395:198–204

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Zaharin Aris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, A.P., Aris, A.Z. A review on economically adsorbents on heavy metals removal in water and wastewater. Rev Environ Sci Biotechnol 13, 163–181 (2014). https://doi.org/10.1007/s11157-013-9330-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-013-9330-2

Keywords

Navigation