Skip to main content

Advertisement

Log in

Cometabolism of trichloroethylene: concepts, limitations and available strategies for sustained biodegradation

  • Reviews
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Due to its toxicity and persistence in the environment, trichloroethylene (TCE) has become a major soil and groundwater contaminant in many countries. A group of aliphatic- and aromatic-degrading bacteria expressing nonspecific oxygenases have been reported to transform TCE through aerobic cometabolism in the presence of primary substrate such as methane, ammonia, propane, phenol, toluene or cumene. This paper reviews the fundamentals and results of TCE cometabolism from laboratory and field studies. The limitations associated with TCE cometabolism including the causes and effects of substrate and/or inducer utilization rate and depletion, enzyme inhibition and inactivation, and cytotoxicity during TCE oxidation among various TCE-degrading bacteria and enzymes are discussed. In addition, the potential strategies e.g. addition of primary substrate/inducer or external energy substrate, use of a two-stage reactor and application of cell immobilization for sustained TCE degradation are highlighted. The review summarizes important information on TCE cometabolism, which is necessary for developing efficient TCE bioremediation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

TCE:

Trichloroethylene

BMOs:

Butane monooxygenases

MMO:

Methane monooxygenase

TDO:

Toluene dioxygenase

DNAPL:

Dense non-aqueous phase liquid

Ind:

Inducer and/or primary substrate

NADH:

Nicotinamide adenine dinucleotide

T c :

TCE transformation capacity

K m :

Concentration of substrate that leads to half-maximal velocity

K i :

Dissociation constant for the enzyme inhibitor complex

K s :

Michaelis constant values for cellular kinetics

References

  • Agency for toxic substances and disease registry (ATSDR) (2011) Toxicological profiles for trichloroethylene. http://www.atsdr.cdc.gov/toxprofiles/tp19.pdf. Accessed 8 Jun 2012

  • Alexander M (1994) Biodegradation and bioremediation. Academic Press, San Diego

    Google Scholar 

  • Alvarez-Cohen L, McCarty PL (1991a) Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells. Appl Environ Microbiol 57:1031–1037

    CAS  Google Scholar 

  • Alvarez-Cohen L, McCarty PL (1991b) Two-stage dispersed-growth treatment of halogenated aliphatic compounds by cometabolism. Environ Sci Technol 25:1387–1393

    Article  CAS  Google Scholar 

  • Alvarez-Cohen L, Speitel GE (2001) Kinetics of aerobic cometabolism of chlorinated solvents. Biodegrad 12:105–126

    Article  CAS  Google Scholar 

  • Anderson EE, Andersen GR (1996) Ground water pollution primer: soil and groundwater pollution. http://cesunl.ce.vt.edu/enviro2/gwprimer.old/tce/tce.html. Accessed 25 March 2009

  • Arp DJ, Yeager CM, Hyman MR (2001) Molecular and cellular fundamentals of aerobic co-metabolism of trichloroethylene. Biodegradation 12:81–103

    Article  CAS  Google Scholar 

  • Brigmon RL, Bell NC, Freedman DL, Berry CJ (1998) Natural attenuation of trichloroethylene in rhizosphere soils at the Savannah River site. J Soil Contam 7:433–453

    Article  CAS  Google Scholar 

  • Chen Y-M, Lin T-F, Huang C, Lin J-C, Hsieh F-M (2007) Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida. J Harzard Mater 148:660–670

    Article  CAS  Google Scholar 

  • Chu K-H, Alvarez-Cohen L (1996) Trichloroethylene degradation by methane-oxidizing cultures grown with various nitrogen sources. Water Environ Res 68:76–82

    Article  CAS  Google Scholar 

  • Chu K-H, Alvarez-Cohen L (1998) Effect of nitrogen source on growth and trichloroethylene degradation by methaneoxidizing bacteria. Appl Environ Microbiol 64:3451–3457

    CAS  Google Scholar 

  • Chu KH, Alvarez-Cohen L (1999) Evaluation of toxic effects of aeration and trichloroethylene oxidation on methanotrophic bacteria grown with different nitrogen sources. Appl Environ Microbiol 65:766–772

    CAS  Google Scholar 

  • Clapp LW (2006) EVEN 6356.2 applied environmental biotechnology. http://www.engineer.tamuk.edu/departments/even/lclapp/. Accessed 1 Dec 2006

  • Cohen Y (2001) Biofiltration-the treatment of fluids by microorganisms immobilized into the filter bedding material: a review. Bioresource Technol 77:257–274

    Article  CAS  Google Scholar 

  • Dabrock B, Riedel J, Bertram J, Gottschalk G (1992) Isopropylbenzene (cumene) an new substrate for the isolation of trichloroethene-degrading bacteria. Arch Microbiol 158:9–13

    Article  CAS  Google Scholar 

  • Dabrock B, Kebeler M, Averhoff B, Gottschaalk G (1994) Identification and characterization of a transmissible linear plasmid from Rhodococcus erythropolis BD2 that encodes isopropylbenzene and trichloroethylene catabolism. Appl Environ Microbiol 60:853–860

    CAS  Google Scholar 

  • Dietz AC, Schnoor JL (2001) Phytotoxicity of chlorinated aliphatics to hybrid poplar (Populus deltoids x nigra DN 34). Envi Toxicol Chem 20(2):389–393

    CAS  Google Scholar 

  • Duba AG, Jackson KJ, Jovanovich MC, Knapp RB, Taylor RT (1996) TCE remediation using in situ, resting-state bioaugmentation. Environ Sci Technol 30:1982–1989

    Article  CAS  Google Scholar 

  • Eder E (1991) Toxicology of C1–C3 chlorinated hydrocarbons. Chemosphere 23:1783–1801

    Article  CAS  Google Scholar 

  • Ely RL, Hyman MR, Arp DJ, Guenther RB, Williamson KJ (1995) A cometabolic kinetics model incorporating enzyme inhibition, inactivation, and recovery II trichloroethylene degradation experiments. Biotechnol Bioeng 46:232–245

    Article  CAS  Google Scholar 

  • Ensley BD (1991) Biochemical diversity of trichloroethylene metabolism. Annu Rev Microbiol 45:283–299

    Article  CAS  Google Scholar 

  • Environmental Agency of Japan (1995) Environmental white paper: biotechnology in sustainable environment. Plenum press, New York

    Google Scholar 

  • Folsom BR, Chapman PJ, Pritchard PH (1990) Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetic and interactions between substrates. Appl Environ Microbiol 56:1279–1285

    CAS  Google Scholar 

  • Fox BG, Borneman JG, Wackett LP, Lipscomb JD (1990) Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental applications. Biochem 29:6419–6427

    Article  CAS  Google Scholar 

  • Fries MR, Forney LJ, Tiedje JM (1997a) Phenol and toluene degrading microbial populations from an aquifer in which successful trichloroethylene cometabolism occurred. Appl Environ Microbiol 63:1523–1530

    CAS  Google Scholar 

  • Fries MR, Hopkins GD, McCarty PL, Forney LJ, Tiedje JM (1997b) Microbial succession during a field evaluation of phenol and toluene as the primary substrates for trichloroethlene cometabolism. Appl Environ Microbiol 63:1515–1522

    CAS  Google Scholar 

  • Fritsche W, Hofrichter M (2008) Biotechnology: environmental processes II, volume 11b in aerobic degradation by microorganisms, 2nd edn. http://www.wileyvch.de/books/biotech/pdf/v11b_aero.pdf. Accessed 20 Mar 2012

  • German Chemical Society (1994) Trichloroethylene/GDCh-advisory committee on existing chemicals of environmental relevance-(June 1991), BUA report 95. Stuttgart: Hirzel; Stuttgart: Wiss. Verl.-Ges. http://www.hirzel.de/bua-report/PDF/Summary_Report95.pdf. Accessed 12 Oct 2011

  • Halsey KH, Sayavedra-Soto LA, Bottomley PJ, Arp DJ (2005) Trichloroethylene degradation by butane-oxidizing bacteria causes a spectrum of toxic effects. Appl Microbiol Biotechnol 68:794–801

    Article  CAS  Google Scholar 

  • Heald S, Jenkins RO (1994) Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida. Appl Environ Microbiol 60:4634–4637

    CAS  Google Scholar 

  • Hopkins GD, McCarty PL (1995) Field evaluation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as primary substrates. Environ Sci Technol 29:1628–1637

    Article  CAS  Google Scholar 

  • Hopkins GD, Semprini L, McCarty PL (1993) Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms. Appl Environ Microbiol 59:2277–2285

    CAS  Google Scholar 

  • Hunter WJ (2005) Injection of innocuous oils to create reactive barriers for bioremediation: laboratory studies. J Contam Hydrol 80:31–48

    Article  CAS  Google Scholar 

  • Hwang JW, Choi YB, Park S, Choi CY, Lee EY (2007) Development and mathematical modelling of a two-stage reactor system for trichloroethylene degradation using Methylosinus trichosporium OB3b. Biodegradation 18(1):91–101

    Article  CAS  Google Scholar 

  • Hyman RD, Russell AS, Ely LR, Williamson JK, Arp DJ (1995) Inhibition, inactivation and recovery of ammonia-oxidizing activity in co-metabolism of trichloroethylene by Nitrosomonas europaea. Appl Environ Microbiol 61:1480–1487

    CAS  Google Scholar 

  • Kao MC, Prosser J (1999) Intrinsic bioremediation of trichloroethylene and chlorobenzene: field and laboratory studies. J Hazard Mater 69:67–79

    Article  CAS  Google Scholar 

  • Kao CM, Chen SC, Su MC (2001) Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation. Chemosphere 44:925–934

    Article  CAS  Google Scholar 

  • Kocamemi BA, Cecen F (2007) Kinetic analysis of the inhibitory effect of trichloroethylene (TCE) on nitrification in cometabolic degradation. Biodegradation 18:71–81

    Article  Google Scholar 

  • Kocamemi BA, Cecen F (2010) Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems. Bioresource Technol 101:430–433

    Article  CAS  Google Scholar 

  • Kuo MCT, Liang KF, Han YL, Fan KC (2004) Pilot studies for in situ aerobic cometabolism of trichloroethylene using toluene-vapor as the primary substrate. Water Res 38:4125–4134

    Article  CAS  Google Scholar 

  • Landa AS, Sipkema EM, Weijma J, Beenackers AACM, Dolfing J, Janssen DB (1994) Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate. Appl Environ Microbiol 60:3368–3374

    CAS  Google Scholar 

  • Lange CC, Wackett LP (1997) Oxidation of aliphatic olefins by toluene dioxygenase: enzyme rates and product identification. J Bacteriol 179:3858–3865

    CAS  Google Scholar 

  • Lee EY (2003) Continuous treatment of gas-phase trichloroethylene by Burkholderia cepacia G4 in a two-stage continuous stirred tank reactor/trickling biofilter system. J Biosci Bioeng 96:572–574

    Article  CAS  Google Scholar 

  • Lee SB, Strand SE, Stensel HD (2000) Sustained degradation of trichloroethylene in a suspended growth gas treatment reactor by an actinomycetes enrichment. Environ Sci Technol 34:3261–3268

    Article  CAS  Google Scholar 

  • Li S, Wackett PL (1992) Trichloroethylene oxidation by toluene dioxygenase. Biochem Biophys Res Commun 185:443–451

    Article  CAS  Google Scholar 

  • Little CD, Palumbo AV, Herbes SE, Lindstrom ME, Tyndall RL, Gilmer PJ (1988) Trichloroethylene biodegradation by methane oxidizing bacterium. Appl Environ Microbiol 54:951–956

    CAS  Google Scholar 

  • Luepromchai E, Suttinun O (2003) Substrate diversity of a new Rhodococcus pyridinovorans and its application for TCE biodegradation. In: SETAC Asia/Pacific|ASE annual meeting, Christchurch, New Zealand

  • Luu PP, Yung CW, Sun AK, Wood TK (1995) Monitoring trichloroethylene mineralization by Pseudomonas cepacia G4 PR1. Appl Microbiol Biotechnol 44:259–264

    Article  CAS  Google Scholar 

  • Madsen EL (1991) Determining in situ biodegradation. Environ Sci Tech 25:1663–1673

    Article  Google Scholar 

  • McCarty PL, Goltz MN, Hopkins GD, Dolan ME, Allen JP, Kawakami BT, Carrothers TJ (1998) Fullscale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environ Sci Technol 32(1):88–100

    Article  CAS  Google Scholar 

  • Milintawisamai M, Chanarong S, Sunthondecha P, Savesthayothin V, Pantachak C (2001) Contamination of chlorinated ethylene in soil and groundwater: the case study of Thailand (in Thai). Research development and technology promotion group, the environmental research and training center, Department of Environmental Quality Promotion, Bangkok

  • Moran MJ, Zogorki JS, Squillance PJ (2007) Chlorinated solvents in groundwater of the United States. Environ Sci Technol 41(1):74–81

    Article  CAS  Google Scholar 

  • Morono Y, Unno H, Tanji Y, Hori K (2004) Addition of aromatic substrates restores trichloroethylene degradation activity in Pseudomonas putida F1. Appl Environ Microbiol 70:2830–2835

    Article  CAS  Google Scholar 

  • Morono Y, Unno H, Hori K (2006) Correlation of TCE cometabolism with growth characteristics on aromatic substrates in toluene-degrading bacteria. Biochem Eng J 31:173–179

    Article  CAS  Google Scholar 

  • Newman LM, Wackett PL (1997) Trichloroethylene oxidation by purified toluene 2-monooxygenase: products, kinetics, and turnover-dependent inactivation. J Bacteriol 179:90–96

    CAS  Google Scholar 

  • Ohlen K, Chang YK, Hegemann W, Yin C-R, Lee S-T (2005) Enhanced degradation of chlorinated ethylenes in groundwater from a paint contaminated site by two-stage fluidized-bed reactor. Chemosphere 58:373–377

    Article  CAS  Google Scholar 

  • Oldenhuis R, Vink RLJM, Janssen DB, Witholt B (1989) Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl Environ Microbiol 55:2819–2826

    CAS  Google Scholar 

  • Oldenhuis R, Oedzes JY, van der Waarde JJ, Janssen DB (1991) Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene. Appl Environ Microbiol 57:7–14

    CAS  Google Scholar 

  • Pant P, Pant S (2010) A review: advances in microbial remediation of trichloroethylene (TCE). J Environ Sci 22(1):116–126

    Article  CAS  Google Scholar 

  • Pflugmacher U, Averhoff B, Gottschalk G (1996) Cloning, sequencing, and expression of isopropylbenzene degradation genes from Pseudomonas sp. Strain JR1: identification of isopropylbenzene dioxygenase that mediates trichloroethene oxidation. Appl Environ Microbiol 62:3967–3977

    CAS  Google Scholar 

  • Quek E, Ting Y-P, Tan HM (2006) Rhodococcus sp. F92 immobilized on polyurethane foam shows ability to degrade various petroleum products. Bioresource Technol 97:32–38

    Article  CAS  Google Scholar 

  • Radway JC, Domingo JWS, Hazen TC, Wilde EW (1998) Evaluation of biodegradation potential of foam embedded Burkholderia cepacia G4. Biotechnol Lett 20:663–666

    Article  CAS  Google Scholar 

  • Ryu SB, Davis LC, Dana J, Erickson LE (1996) Evaluation of toxicity of trichloroethylene for plants. HSRC/WERC joint conference on the environment, May 1996. http://www.engg.ksu.edu/HSRC/96Proceed/ryu.html. Accessed 1 Jun 2012

  • Saeki H, Akira M, Furuhashi K, Averhoff B, Gottschalk G (1999) Degradation of trichloroethene by a linear-plasmid-encoded alkene monooxygenase in Rhodococcus corallinus (Nocardia corallina) B-276. Microbiology 145:1721–1730

    Article  CAS  Google Scholar 

  • Semprini L (1997) Strategies for the aerobic co-metabolism of chlorinated solvents. Curr Opin Biotechnol 8:296–308

    Article  CAS  Google Scholar 

  • Semprini L, Roberts PV, Hopkins GD, McCarty PL (1990) A field evaluation of in situ biodegradation of chlorinated ethenes. Ground Water 29:239–250

    Article  Google Scholar 

  • Shimomura T, Suda F, Uchiyama H, Yagi O (1997) Biodegradation of trichloroethylene by Methylocystis sp. strain M immobilized in gel beads in a fluidized-bed bioreactor. Water Res 31:2383–2386

    Article  CAS  Google Scholar 

  • Sukhapan J (2007) Development of environmental and emission Standard of VOCs 2007. http://www.pcd.go.th/info_serv/air_seminarVOC07.html. Accessed 8 December 2008

  • Suttinun O, Lederman PB, Luepromchai E (2004) Application of terpene-induced cell for enhancing biodegradation of TCE contaminated soil. Songklanakarin J Sci Technol 26(suppl 1):131–142

    Google Scholar 

  • Suttinun O, Muller R, Luepromchai E (2009) Trichloroethylene cometabolic degradation by Rhodococcus sp. L4 induced with plant essential oils. Biodegradation 20:281–291

    Article  CAS  Google Scholar 

  • Suttinun O, Muller R, Luepromchai E (2010) Cometabolic degradation of trichloroethylene by Rhodococcus sp. strain L4 immobilized on plant materials rich in essential oils. Appl Environ Microbiol 76(14):4684–4690

    Article  CAS  Google Scholar 

  • Uchiyama H, Yagi O, Oguri K, Kokufuta E (1994) Immobilization of tricholoroethylene-degrading bacterium, Methylocystis sp. strain M in different matrices. J Ferment Bioeng 77:173–177

    Article  CAS  Google Scholar 

  • Uchiyama H, Oguri K, Nishibayashi M, Kokufuta E, Yagi O (1995) Trichloroethylene degradation by cells of a methane-utilizing bacterium, Methylocystis sp. M, immobilized in calcium alginate. J Ferment Bioeng 79:608–613

    Article  CAS  Google Scholar 

  • Vannelli T, Logan M, Arciero MD, Hooper BA (1990) Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl Environ Microbiol 56:1169–1171

    CAS  Google Scholar 

  • Wackett LP, Householder SR (1989) Toxicity of trichloroethylene to Pseudomonas putida F1 is mediated by toluene dioxygenase. Appl Environ Microbiol 55:2723–2725

    CAS  Google Scholar 

  • Wilson JT, Wilson BH (1985) Biotransformation of trichloroethylene in soil. Appl Environ Microbiol 29:242–243

    Google Scholar 

  • Yang L, Chang Y-F, Chou M-S (1999) Feasibility of bioremediation of trichloroethylene contaminated sites by nitrifying bacteria through cometabolism with ammonia. J Hazard Mater 69:111–126

    Article  CAS  Google Scholar 

  • Yeager CM, Bottomley PJ, Arp DJ (2001a) Cytotoxicity associated with trichloroethylene oxidation in Burkholderia cepacia G4. Appl Environ Microbiol 67:2107–2115

    Article  CAS  Google Scholar 

  • Yeager CM, Bottomley PJ, Arp DJ (2001b) Requirement of DNA repair mechanisms for survival of Burkholderia cepacia G4 upon degradation of trichloroethylene. Appl Environ Microbiol 67:5384–5391

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oramas Suttinun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suttinun, O., Luepromchai, E. & Müller, R. Cometabolism of trichloroethylene: concepts, limitations and available strategies for sustained biodegradation. Rev Environ Sci Biotechnol 12, 99–114 (2013). https://doi.org/10.1007/s11157-012-9291-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-012-9291-x

Keywords

Navigation