Skip to main content

Advertisement

Log in

Advances in TRH signaling

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The activity of the hypothalamus-pituitary-thyroid axis (HPT) is coordinated by hypophysiotropic thyrotropin releasing hormone (TRH) neurons present in the paraventricular nucleus of the hypothalamus. Hypophysiotropic TRH neurons act as energy sensors. TRH controls the synthesis and release of thyrotropin, which activates the synthesis and secretion of thyroid hormones; in target tissues, transporters and deiodinases control their local availability. Thyroid hormones regulate many functions, including energy homeostasis. This review discusses recent evidence that covers several aspects of TRH role in HPT axis regulation. Knowledge about the mechanisms of TRH signaling has steadily increased. New transcription factors engaged in TRH gene expression have been identified, and advances made on how they interact with signaling pathways and define the dynamics of TRH neurons response to acute and/or long-term influences. Albeit yet incomplete, the relationship of TRH neurons activity with positive energy balance has emerged. The importance of tanycytes as a central relay for the feedback control of the axis, as well as for HPT responses to alterations in energy balance, and other stimuli has been reinforced. Finally, some studies have started to shed light on the interference of prenatal and postnatal stress and nutrition on HPT axis programing, which have confirmed the axis susceptibility to early insults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Joseph-Bravo P, Jaimes-Hoy L, Charli JL. Regulation of TRH neurons and energy homeostasis-related signals under stress. J Endocrinol. 2015;224(3):R139–59.

    Article  CAS  PubMed  Google Scholar 

  2. Fekete C, Lechan RM. Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr Rev. 2014;35(2):159–94.

    Article  CAS  PubMed  Google Scholar 

  3. Wittmann G, Füzesi T, Singru PS, Liposits Z, Lechan RM, Fekete C. Efferent projections of thyrotropin-releasing hormone-synthesizing neurons residing in the anterior parvocellular subdivision of the hypothalamic paraventricular nucleus. J Comp Neurol. 2009;515(3):313–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sutton AK, Myers Jr MG, Olson DP. The role of PVH circuits in leptin action and energy balance. Annu Rev Physiol. 2016;78:207–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kalsbeek A, Bruinstroop E, Yi CX, Klieverik LP, La Fleur SE, Fliers E. Hypothalamic control of energy metabolism via the autonomic nervous system. Ann N Y Acad Sci. 2010;1212:114–29.

    Article  CAS  PubMed  Google Scholar 

  6. Shi ZX, Levy A, Lightman SL. Hippocampal input to the hypothalamus inhibits thyrotrophin and thyrotrophin-releasing hormone gene expression. Neuroendocrinology. 1993;57(4):576–80.

    Article  CAS  PubMed  Google Scholar 

  7. Fliers E, Kalsbeek A, Boelen A. Beyond the fixed setpoint of the hypothalamus-pituitary-thyroid axis. Eur J Endocrinol. 2014;171(5):R197–208.

    Article  CAS  PubMed  Google Scholar 

  8. Fliers E, Bianco AC, Langouche L, Boelen A. Thyroid function in critically ill patients. Lancet Diabetes Endocrinol. 2015;3(10):816–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mulcahy LR, Vaslet CA, Nillni EA. Prohormone-convertase 1 processing enhances post-Golgi sorting of prothyrotropin-releasing hormone-derived peptides. J Biol Chem. 2005;280(48):39818–26.

    Article  CAS  PubMed  Google Scholar 

  10. Lochner JE, Kingma M, Kuhn S, Meliza CD, Cutler B, Scalettar BA. Real-time imaging of the axonal transport of granules containing a tissue plasminogen activator/green fluorescent protein hybrid. Mol Biol Cell. 1998;9(9):2463–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goodman T, Hajihosseini MK. Hypothalamic tanycytes-masters and servants of metabolic, neuroendocrine, and neurogenic functions. Front Neurosci. 2015;9:387.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Diano S, Leonard JL, Meli R, Esposito E, Schiavo L. Hypothalamic type II iodothyronine deiodinase: a light and electron microscopic study. Brain Res. 2003;976(1):130–4.

    Article  CAS  PubMed  Google Scholar 

  13. Sánchez E, Vargas MA, Singru PS, Pascual I, Romero F, Fekete C, Charli JL, Lechan RM. Tanycyte pyroglutamyl peptidase II contributes to regulation of the hypothalamic-pituitary-thyroid axis through glial-axonal associations in the median eminence. Endocrinology. 2009;150(5):2283–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Charli JL, Cruz C, Vargas MA, Joseph-Bravo P. The narrow specificity pyroglutamate amino peptidase degrading TRH in rat brain is an ectoenzyme. Neurochem Int. 1988;13(2):237–42.

    Article  CAS  PubMed  Google Scholar 

  15. Bauer K, Carmeliet P, Schulz M, Baes M, Denef C. Regulation and cellular localization of the membrane-bound thyrotropin-releasing hormone-degrading enzyme in primary cultures of neuronal, glial and adenohypophyseal cells. Endocrinology. 1990;127(3):1224–33.

    Article  CAS  PubMed  Google Scholar 

  16. Sánchez E, Charli JL, Lechan RM. Pyroglutamyl-peptidase II In: Rawlings, N.D. Handbook of Proteolytic Enzymes. Academic Press. 2013:414–9.

  17. Joseph-Bravo P, Jaimes-Hoy L, Uribe RM, Charli JL. 60 years of neuroendocrinology: TRH, the first hypophysiotropic releasing hormone isolated: control of the pituitary-thyroid axis. J Endocrinol. 2015;226(2):T85–T100.

  18. Galas L, Raoult E, Tonon MC, Okada R, Jenks BG, Castaño JP, Kikuyama S, Malagon M, Roubos EW, Vaudry H. TRH acts as a multifunctional hypophysiotropic factor in vertebrates. Gen Comp Endocrinol. 2009;164(1):40–50.

    Article  CAS  PubMed  Google Scholar 

  19. Hinkle PM, Gehret AU, Jones BW. Desensitization, trafficking, and resensitization of the pituitary thyrotropin-releasing hormone receptor. Front Neurosci. 2012;6:180.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shupnik MA, Chin WW, Habener JF, Ridgway EC. Transcriptional regulation of the thyrotropin subunit genes by thyroid hormone. J Biol Chem. 1985;260(5):2900–3.

    CAS  PubMed  Google Scholar 

  21. Weintraub BD, Gesundheit N, Taylor T, Gyves PW. Effect of TRH on TSH glycosylation and biological action. Ann N Y Acad Sci. 1989;553:205–13.

    Article  CAS  PubMed  Google Scholar 

  22. Kanasaki H, Oride A, Mijiddorj T, Kyo S. Role of thyrotropin-releasing hormone in prolactin-producing cell models. Neuropeptides. 2015;54:73–7.

    Article  CAS  PubMed  Google Scholar 

  23. Bargi-Souza P, Kucka M, Bjelobaba I, Tomić M, Janjic MM, Nunes MT, Stojilkovic SS. Loss of basal and TRH-stimulated Tshb expression in dispersed pituitary cells. Endocrinology. 2015;156(1):242–54.

    Article  PubMed  CAS  Google Scholar 

  24. Bockmann J, Böckers TM, Winter C, Wittkowski W, Winterhoff H, Deufel T, Kreutz MR. Thyrotropin expression in hypophyseal pars tuberalis-specific cells is 3, 5,3'-triiodothyronine, thyrotropin-releasing hormone, and pit-1 independent. Endocrinology. 1997;138(3):1019–28.

    CAS  Google Scholar 

  25. Watanabe T, Yamamura T, Watanabe M, Yasuo S, Nakao N, Dawson A, Ebihara S, Yoshimura T. Hypothalamic expression of thyroid hormone-activating and-inactivating enzyme genes in relation to photorefractoriness in birds and mammals. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R568–72.

    Article  CAS  PubMed  Google Scholar 

  26. Ono H, Hoshino Y, Yasuo S, Watanabe M, Nakane Y, Murai A, Ebihara S, Korf HW, Yoshimura T. Involvement of thyrotropin in photoperiodic signal transduction in mice. Proc Natl Acad Sci U S A. 2008;105(47):18238–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bolborea M, Helfer G, Ebling FJ, Barrett P. Dual signal transduction pathways activated by TSH receptors in rat primary tanycyte cultures. J Mol Endocrinol. 2015;54(3):241–50.

    Article  CAS  PubMed  Google Scholar 

  28. Ikegami K, Liao XH, Hoshino Y, Ono H, Ota W, Ito Y, Nishiwaki-Ohkawa T, Sato C, Kitajima K, Iigo M, Shigeyoshi Y, Yamada M, Murata Y, Refetoff S, Yoshimura T. Tissue-specific posttranslational modification allows functional targeting of thyrotropin. Cell Rep. 2014;9(3):801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sugrue ML, Vella KR, Morales C, Lopez ME, Hollenberg AN. The thyrotropin-releasing hormone gene is regulated by thyroid hormone at the level of transcription in vivo. Endocrinology. 2010;151(2):793–801.

    Article  CAS  PubMed  Google Scholar 

  30. Hollenberg AN. The role of the thyrotropin-releasing hormone (TRH) neuron as a metabolic sensor. Thyroid. 2008;18(2):131–9.

    Article  CAS  PubMed  Google Scholar 

  31. Abel ED, Ahima RS, Boers ME, Elmquist JK, Wondisford FE. Critical role for thyroid hormone receptor beta2 in the regulation of paraventricular thyrotropin-releasing hormone neurons. J Clin Invest. 2001;107(8):1017–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ishii S, Yamada M, Satoh T, Monden T, Hashimoto K, Shibusawa N, Onigata K, Morikawa A, Mori M. Aberrant dynamics of histone deacetylation at the thyrotropin-releasing hormone gene in resistance to thyroid hormone. Mol Endocrinol. 2004;18(7):1708–20.

    Article  CAS  PubMed  Google Scholar 

  33. Díaz-Gallardo MY, Cote-Vélez A, Carreón-Rodríguez A, Charli JL, Joseph-Bravo P. Phosphorylated cyclic-AMP-response element-binding protein and thyroid hormone receptor have independent response elements in the rat thyrotropin-releasing hormone promoter: an analysis in hypothalamic cells. Neuroendocrinology. 2010;91(1):64–76.

    Article  PubMed  CAS  Google Scholar 

  34. Vella KR, Ramadoss P, Costa-E-Sousa RH, Astapova I, Ye FD, Holtz KA, Harris JC, Hollenberg AN. Thyroid hormone signaling in vivo requires a balance between coactivators and corepressors. Mol Cell Biol. 2014;34(9):1564–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Matsunaga H, Sasaki S, Suzuki S, Matsushita A, Nakamura H, Nakamura HM, Hirahara N, Kuroda G, Iwaki H, Ohba K, Morita H, Oki Y, Suda T. Essential role of GATA2 in the negative regulation of type 2 deiodinase Gene by Liganded thyroid hormone receptor β2 in thyrotroph. PLoS One. 2015;10(11):e0142400.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94(2):355–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang R, Wang Y, Li R, Chen G. Transcriptional factors mediating retinoic acid signals in the control of energy metabolism. Int J Mol Sci. 2015;16(6):14210–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Decherf S, Seugnet I, Becker N, Demeneix BA, Clerget-Froidevaux MS. Retinoic X receptor subtypes exert differential effects on the regulation of Trh transcription. Mol Cell Endocrinol. 2013;381(1–2):115–23.

    Article  CAS  PubMed  Google Scholar 

  39. Sharma V, Hays WR, Wood WM, Pugazhenthi U, St Germain DL, Bianco AC, Krezel W, Chambon P, Haugen BR. Effects of rexinoids on thyrotrope function and the hypothalamic-pituitary-thyroid axis. Endocrinology. 2006;147(3):1438–51.

    Article  CAS  PubMed  Google Scholar 

  40. Stoney PN, Helfer G, Rodrigues D, Morgan PJ, McCaffery P. Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes. Glia. 2016;64(3):425–39.

    Article  PubMed  Google Scholar 

  41. Kouidhi S, Seugnet I, Decherf S, Guissouma H, Elgaaied AB, Demeneix B, Clerget-Froidevaux MS. Peroxisome proliferator-activated receptor-gamma (PPARgamma) modulates hypothalamic Trh regulation in vivo. Mol Cell Endocrinol. 2010;317(1–2):44–52.

    Article  CAS  PubMed  Google Scholar 

  42. Korach-André M, Gustafsson JÅ. Liver X receptors as regulators of metabolism. Biomol Concepts. 2015;6(3):177–90.

    Article  PubMed  CAS  Google Scholar 

  43. Ghaddab-Zroud R, Seugnet I, Steffensen KR, Demeneix BA, Clerget-Froidevaux MS. Liver X receptor regulation of thyrotropin-releasing hormone transcription in mouse hypothalamus is dependent on thyroid status. PLoS One. 2014;9(9):e106983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Miao Y, Wu W, Dai Y, Maneix L, Huang B, Warner M, Gustafsson JÅ. Liver X receptor β controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue. Proc Natl Acad Sci U S A. 2015;112(45):14006–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cermenati G, Brioschi E, Abbiati F, Melcangi RC, Caruso D, Mitro N. Liver X receptors, nervous system, and lipid metabolism. J Endocrinol Investig. 2013;36(6):435–43.

    CAS  Google Scholar 

  46. Iwen KA, Schröder E, Brabant G. Thyroid hormones and the metabolic syndrome. Eur Thyroid J. 2013;2(2):83–92.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Santini F, Marzullo P, Rotondi M, Ceccarini G, Pagano L, Ippolito S, Chiovato L, Biondi B. Mechanisms in endocrinology: the crosstalk between thyroid gland and adipose tissue: signal integration in health and disease. Eur J Endocrinol. 2014;171(4):R137–52.

    Article  CAS  PubMed  Google Scholar 

  48. Bernal J, Guadaño-Ferraz A, Morte B. Thyroid hormone transporters--functions and clinical implications. Nat Rev Endocrinol. 2015;11(7):406–17.

    Article  CAS  PubMed  Google Scholar 

  49. Schweizer U, Köhrle J. Function of thyroid hormone transporters in the central nervous system. Biochim Biophys Acta. 2013;1830(7):3965–73.

    Article  CAS  PubMed  Google Scholar 

  50. Heuer H, Visser TJ. The pathophysiological consequences of thyroid hormone transporter deficiencies: insights from mouse models. Biochim Biophys Acta. 2013;1830(7):3974–8.

    Article  CAS  PubMed  Google Scholar 

  51. Werneck de Castro JP, Fonseca TL, Ueta CB, McAninch EA, Abdalla S, Wittmann G, Lechan RM, Gereben B, Bianco AC. Differences in hypothalamic type 2 deiodinase ubiquitination explain localized sensitivity to thyroxine. J Clin Invest. 2015;125(2):769–81.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tu HM, Kim SW, Salvatore D, Bartha T, Legradi G, Larsen PR, Lechan RM. Regional distribution of type 2 thyroxine deiodinase messenger ribonucleic acid in rat hypothalamus and pituitary and its regulation by thyroid hormone. Endocrinology. 1997;138(8):3359–68.

    CAS  PubMed  Google Scholar 

  53. Kalló I, Mohácsik P, Vida B, Zeöld A, Bardóczi Z, Zavacki AM, Farkas E, Kádár A, Hrabovszky E, Arrojo E, Drigo R, Dong L, Barna L, Palkovits M, Borsay BA, Herczeg L, Lechan RM, Bianco AC, Liposits Z, Fekete C, Gereben B. A novel pathway regulates thyroid hormone availability in rat and human hypothalamic neurosecretory neurons. PLoS One. 2012;7(6):e37860.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tu HM, Legradi G, Bartha T, Salvatore D, Lechan RM, Larsen PR. Regional expression of the type 3 iodothyronine deiodinase messenger ribonucleic acid in the rat central nervous system and its regulation by thyroid hormone. Endocrinology. 1999;140(2):784–90.

    CAS  PubMed  Google Scholar 

  55. Herwig A, Campbell G, Mayer CD, Boelen A, Anderson RA, Ross AW, Mercer JG, Barrett P. A thyroid hormone challenge in hypothyroid rats identifies T3 regulated genes in the hypothalamus and in models with altered energy balance and glucose homeostasis. Thyroid. 2014;24(11):1575–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang SA, Bianco AC. Reawakened interest in type III iodothyronine deiodinase in critical illness and injury. Nat Clin Pract Endocrinol Metab. 2008;4(3):148–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gereben B, McAninch EA, Ribeiro MO, Bianco AC. Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat Rev Endocrinol. 2015;11(11):642–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Calvino C, Império GE, Wilieman M, Costa-E-Sousa RH, Souza LL, Trevenzoli IH, Pazos-Moura CC. Hypothyroidism induces Hypophagia associated with alterations in protein expression of neuropeptide Y and proopiomelanocortin in the arcuate nucleus, independently of hypothalamic nuclei-specific changes in leptin signaling. Thyroid. 2016;26(1):134–43.

    Article  CAS  PubMed  Google Scholar 

  59. Koller KJ, Wolff RS, Warden MK, Zoeller RT. Thyroid hormones regulate levels of thyrotropin-releasing-hormone mRNA in the paraventricular nucleus. Proc Natl Acad Sci U S A. 1987;84(20):7329–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Segerson TP, Kauer J, Wolfe HC, Mobtaker H, Wu P, Jackson IM, Lechan RM. Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat hypothalamus. Science. 1987;238(4823):78–80.

    Article  CAS  PubMed  Google Scholar 

  61. Kakucska I, Rand W, Lechan RM. Thyrotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus is dependent upon feedback regulation by both triiodothyronine and thyroxine. Endocrinology. 1992;130(5):2845–50.

    CAS  PubMed  Google Scholar 

  62. Perello M, Friedman T, Paez-Espinosa V, Shen X, Stuart RC, Nillni EA. Thyroid hormones selectively regulate the posttranslational processing of prothyrotropin-releasing hormone in the paraventricular nucleus of the hypothalamus. Endocrinology. 2006;147(6):2705–16.

    Article  CAS  PubMed  Google Scholar 

  63. Lazcano I, Cabral A, Uribe RM, Jaimes-Hoy L, Perello M, Joseph-Bravo P, Sánchez-Jaramillo E, Charli JL. Fasting enhances pyroglutamyl peptidase II activity in tanycytes of the mediobasal hypothalamus of male adult rats. Endocrinology. 2015;156(7):2713–23.

    Article  CAS  PubMed  Google Scholar 

  64. Marsili A, Sanchez E, Singru P, Harney JW, Zavacki AM, Lechan RM, Larsen PR. Thyroxine-induced expression of pyroglutamyl peptidase II and inhibition of TSH release precedes suppression of TRH mRNA and requires type 2 deiodinase. J Endocrinol. 2011;211(1):73–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bauer K. Regulation of degradation of thyrotropin releasing hormone by thyroid hormones. Nature. 1976;259(5544):591–3.

    Article  CAS  PubMed  Google Scholar 

  66. Schmitmeier S, Thole H, Bader A, Bauer K. Purification and characterization of the thyrotropin-releasing hormone (TRH)-degrading serum enzyme and its identification as a product of liver origin. Eur J Biochem. 2002;269(4):1278–86.

    Article  CAS  PubMed  Google Scholar 

  67. Chiamolera MI, Sidhaye AR, Matsumoto S, He Q, Hashimoto K, Ortiga-Carvalho TM, Wondisford FE. Fundamentally distinct roles of thyroid hormone receptor isoforms in a thyrotroph cell line are due to differential DNA binding. Mol Endocrinol. 2012;26(6):926–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schomburg L, Bauer K. Thyroid hormones rapidly and stringently regulate the messenger RNA levels of the thyrotropin-releasing hormone (TRH) receptor and the TRH-degrading ectoenzyme. Endocrinology. 1995;136(8):3480–5.

    CAS  PubMed  Google Scholar 

  69. Hoermann R, Midgley JE, Larisch R, Dietrich JW. Homeostatic Control of the Thyroid-Pituitary Axis: Perspectives for Diagnosis and Treatment. Front Endocrinol (Lausanne). 2015;6:–177.

  70. Ehrenkranz J, Bach PR, Snow GL, Schneider A, Lee JL, Ilstrup S, Bennett ST, Benvenga S. Circadian and circannual rhythms in thyroid hormones: determining the TSH and free T4 reference intervals based upon time of day, age, and sex. Thyroid. 2015;25(8):954–61.

    Article  CAS  PubMed  Google Scholar 

  71. Cruz R, Chávez-Gutiérrez L, Joseph-Bravo P, Charli JL. 3,3',5'-triiodo-L-thyronine reduces efficiency of mRNA knockdown by antisense oligodeoxynucleotides: a study with pyroglutamyl aminopeptidase II in adenohypophysis. Oligonucleotides. 2004;14(3):176–90.

    CAS  PubMed  Google Scholar 

  72. de Vries EM, Fliers E, Boelen A. The molecular basis of the non-thyroidal illness syndrome. J Endocrinol. 2015;225(3):R67–81.

    Article  PubMed  CAS  Google Scholar 

  73. Sánchez E, Singru PS, Wittmann G, Nouriel SS, Barrett P, Fekete C, Lechan RM. Contribution of TNF-alpha and nuclear factor-kappaB signaling to type 2 iodothyronine deiodinase activation in the mediobasal hypothalamus after lipopolysaccharide administration. Endocrinology. 2010;151(8):3827–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Wittmann G, Harney JW, Singru PS, Nouriel SS, Reed Larsen P, Lechan RM. Inflammation-inducible type 2 deiodinase expression in the leptomeninges, choroid plexus, and at brain blood vessels in male rodents. Endocrinology. 2014;155(5):2009–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. de Vries EM, Kwakkel J, Eggels L, Kalsbeek A, Barrett P, Fliers E, Boelen A. NFκB signaling is essential for the lipopolysaccharide-induced increase of type 2 deiodinase in tanycytes. Endocrinology. 2014;155(5):2000–8.

    Article  PubMed  CAS  Google Scholar 

  76. Wittmann G, Szabon J, Mohácsik P, Nouriel SS, Gereben B, Fekete C, Lechan RM. Parallel regulation of thyroid hormone transporters OATP1c1 and MCT8 during and after endotoxemia at the blood-brain barrier of male rodents. Endocrinology. 2015;156(4):1552–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Guo F, Bakal K, Minokoshi Y, Hollenberg AN. Leptin signaling targets the thyrotropin-releasing hormone gene promoter in vivo. Endocrinology. 2004;145(5):2221–7.

    Article  CAS  PubMed  Google Scholar 

  78. Ghamari-Langroudi M, Srisai D, Cone RD. Multinodal regulation of the arcuate/paraventricular nucleus circuit by leptin. Proc Natl Acad Sci U S A. 2011;108(1):355–60.

    Article  CAS  PubMed  Google Scholar 

  79. Légrádi G, Emerson CH, Ahima RS, Flier JS, Lechan RM. Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus. Endocrinology. 1997;138(6):2569–76.

    PubMed  Google Scholar 

  80. Coppola A, Meli R, Diano S. Inverse shift in circulating corticosterone and leptin levels elevates hypothalamic deiodinase type 2 in fasted rats. Endocrinology. 2005;146(6):2827–33.

    Article  CAS  PubMed  Google Scholar 

  81. Bergen HT, Mizuno T, Taylor J, Mobbs CV. Resistance to diet-induced obesity is associated with increased proopiomelanocortin mRNA and decreased neuropeptide Y mRNA in the hypothalamus. Brain Res. 1999;851(1–2):198–203.

    Article  CAS  PubMed  Google Scholar 

  82. Perello M, Cakir I, Cyr NE, Romero A, Stuart RC, Chiappini F, Hollenberg AN, Nillni EA. Maintenance of the thyroid axis during diet-induced obesity in rodents is controlled at the central level. Am J Physiol Endocrinol Metab. 2010;299(6):E976–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cyr NE, Steger JS, Toorie AM, Yang JZ, Stuart R, Nillni EA. Central Sirt1 regulates body weight and energy expenditure along with the POMC-derived peptide α-MSH and the processing enzyme CPE production in diet-induced obese male rats. Endocrinology. 2015;156(3):961–74.

    Article  CAS  PubMed  Google Scholar 

  84. Cifani C, Micioni Di Bonaventura MV, Pucci M, Giusepponi ME, Romano A, Di Francesco A, Maccarrone M, D'Addario C. Regulation of hypothalamic neuropeptides gene expression in diet induced obesity resistant rats: possible targets for obesity prediction? Front Neurosci. 2015;9:187.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Xia SF, Duan XM, Hao LY, Li LT, Cheng XR, Xie ZX, Qiao Y, Li LR, Tang X, Shi YH, Le GW. Role of thyroid hormone homeostasis in obesity-prone and obesity-resistant mice fed a high-fat diet. Metabolism. 2015;64(5):566–79.

    Article  CAS  PubMed  Google Scholar 

  86. Byerly MS, Simon J, Lebihan-Duval E, Duclos MJ, Cogburn LA, Porter TE. Effects of BDNF, T3, and corticosterone on expression of the hypothalamic obesity gene network in vivo and in vitro. Am J Physiol Regul Integr Comp Physiol. 2009;296(4):R1180–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cao L, Choi EY, Liu X, Martin A, Wang C, Xu X, During MJ. White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab. 2011;14(3):324–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mariman EC, Bouwman FG, Aller EE, van Baak MA, Wang P. Extreme obesity is associated with variation in genes related to the circadian rhythm of food intake and hypothalamic signaling. Physiol Genomics. 2015;47(6):225–31.

    Article  CAS  PubMed  Google Scholar 

  89. Nuzzaci D, Laderrière A, Lemoine A, Nédélec E, Pénicaud L, Rigault C, Benani A. Plasticity of the Melanocortin System: Determinants and Possible Consequences on Food Intake. Front Endocrinol (Lausanne). 2015;6:–143.

  90. Waterson MJ, Horvath TL. Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab. 2015;22(6):962–70.

    Article  CAS  PubMed  Google Scholar 

  91. Uribe RM, Redondo JL, Charli JL, Joseph-Bravo P. Suckling and cold stress rapidly and transiently increase TRH mRNA in the paraventricular nucleus. Neuroendocrinology. 1993;58(1):140–5.

    Article  CAS  PubMed  Google Scholar 

  92. Gutiérrez-Mariscal M, Sánchez E, García-Vázquez A, Rebolledo-Solleiro D, Charli JL, Joseph-Bravo P. Acute response of hypophysiotropic thyrotropin releasing hormone neurons and thyrotropin release to behavioral paradigms producing varying intensities of stress and physical activity. Regul Pept. 2012;179(1–3):61–70.

    Article  PubMed  CAS  Google Scholar 

  93. Sánchez E, Uribe RM, Corkidi G, Zoeller RT, Cisneros M, Zacarias M, Morales-Chapa C, Charli JL, Joseph-Bravo P. Differential responses of thyrotropin-releasing hormone (TRH) neurons to cold exposure or suckling indicate functional heterogeneity of the TRH system in the paraventricular nucleus of the rat hypothalamus. Neuroendocrinology. 2001;74(6):407–22.

    Article  PubMed  Google Scholar 

  94. Aguilar-Valles A, Sánchez E, de Gortari P, García-Vazquez AI, Ramírez-Amaya V, Bermúdez-Rattoni F, Joseph-Bravo P. The expression of TRH, its receptors and degrading enzyme is differentially modulated in the rat limbic system during training in the Morris water maze. Neurochem Int. 2007;50(2):404–17.

    Article  CAS  PubMed  Google Scholar 

  95. Perello M, Stuart RC, Vaslet CA, Nillni EA. Cold exposure increases the biosynthesis and proteolytic processing of prothyrotropin-releasing hormone in the hypothalamic paraventricular nucleus via beta-adrenoreceptors. Endocrinology. 2007;148(10):4952–64.

    Article  CAS  PubMed  Google Scholar 

  96. Sotelo-Rivera I, Jaimes-Hoy L, Cote-Vélez A, Espinoza-Ayala C, Charli JL, Joseph-Bravo P. An acute injection of corticosterone increases thyrotrophin-releasing hormone expression in the paraventricular nucleus of the hypothalamus but interferes with the rapid hypothalamus pituitary thyroid axis response to cold in male rats. J Neuroendocrinol. 2014;26(12):861–9.

    Article  CAS  PubMed  Google Scholar 

  97. McAninch EA, Bianco AC. Thyroid hormone signaling in energy homeostasis and energy metabolism. Ann N Y Acad Sci. 2014;1311:77–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zoeller RT, Kabeer N, Albers HE. Cold exposure elevates cellular levels of messenger ribonucleic acid encoding thyrotropin-releasing hormone in paraventricular nucleus despite elevated levels of thyroid hormones. Endocrinology. 1990;127(6):2955–62.

    Article  CAS  PubMed  Google Scholar 

  99. Cote-Vélez A, Pérez-Martínez L, Díaz-Gallardo MY, Pérez-Monter C, Carreón-Rodríguez A, Charli JL, Joseph-Bravo P. Dexamethasone represses cAMP rapid upregulation of TRH gene transcription: identification of a composite glucocorticoid response element and a cAMP response element in TRH promoter. J Mol Endocrinol. 2005;34(1):177–97.

    Article  PubMed  CAS  Google Scholar 

  100. Cote-Vélez A, Pérez-Martínez L, Charli JL, Joseph-Bravo P. The PKC and ERK/MAPK pathways regulate glucocorticoid action on TRH transcription. Neurochem Res. 2008;33(8):1582–91.

    Article  PubMed  CAS  Google Scholar 

  101. Díaz-Gallardo MY, Cote-Vélez A, Charli JL, Joseph-Bravo P. A rapid interference between glucocorticoids and cAMP-activated signalling in hypothalamic neurons prevents binding of phosphorylated cAMP response element binding protein and glucocorticoid receptor at the CRE-like and composite GRE sites of thyrotrophin-releasing hormone gene promoter. J Neuroendocrinol. 2010;22(4):282–93.

    Article  PubMed  CAS  Google Scholar 

  102. Cote-Vélez A, Pérez-Maldonado A, Osuna J, Barrera B, Charli JL, Joseph-Bravo P. Creb and Sp/Krüppel response elements cooperate to control rat TRH gene transcription in response to cAMP. Biochim Biophys Acta. 2011;1809(3):191–9.

    Article  PubMed  CAS  Google Scholar 

  103. Sarkar S, Légrádi G, Lechan RM. Intracerebroventricular administration of alpha-melanocyte stimulating hormone increases phosphorylation of CREB in TRH- and CRH-producing neurons of the hypothalamic paraventricular nucleus. Brain Res. 2002;945(1):50–9.

    Article  CAS  PubMed  Google Scholar 

  104. Osterlund C, Spencer RL. Corticosterone pretreatment suppresses stress-induced hypothalamic-pituitary-adrenal axis activity via multiple actions that vary with time, site of action, and de novo protein synthesis. J Endocrinol. 2011;208(3):311–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Knoedler JR, Denver RJ. Krüppel-like factors are effectors of nuclear receptor signaling. Gen Comp Endocrinol. 2014;203:49–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mastorakos G, Pavlatou M. Exercise as a stress model and the interplay between the hypothalamus-pituitary-adrenal and the hypothalamus-pituitary-thyroid axes. Horm Metab Res. 2005;37(9):577–84.

    Article  CAS  PubMed  Google Scholar 

  107. Fortunato RS, Ignácio DL, Padron AS, Peçanha R, Marassi MP, Rosenthal D, Werneck-de-Castro JP, Carvalho DP. The effect of acute exercise session on thyroid hormone economy in rats. J Endocrinol. 2008;198(2):347–53.

    Article  CAS  PubMed  Google Scholar 

  108. Ignacio DL, da S Silvestre DH, Cavalcanti-de-Albuquerque JP, Louzada RA, Carvalho DP, Werneck-de-Castro JP. Thyroid hormone and estrogen regulate exercise-induced growth hormone release. PLoS One. 2015;10(4):e0122556.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Uribe RM, Jaimes-Hoy L, Ramírez-Martínez C, García-Vázquez A, Romero F, Cisneros M, Cote-Vélez A, Charli JL, Joseph-Bravo P. Voluntary exercise adapts the hypothalamus-pituitary-thyroid axis in male rats. Endocrinology. 2014;155(5):2020–30.

    Article  PubMed  CAS  Google Scholar 

  110. Martin B, Ji S, Maudsley S, Mattson MP. “control” laboratory rodents are metabolically morbid: why it matters. Proc Natl Acad Sci U S A. 2010;107(14):6127–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yamada M, Satoh T, Mori M. Mice lacking the thyrotropin-releasing hormone gene: what do they tell us? Thyroid. 2003;13(12):1111–21.

    Article  CAS  PubMed  Google Scholar 

  112. García M, Fernández A, Moreno JC. Central hypothyroidism in children. Endocr Dev. 2014;26:79–107.

    PubMed  Google Scholar 

  113. Medici M, Visser WE, Visser TJ, Peeters RP. Genetic determination of the hypothalamic-pituitary-thyroid axis: where do we stand? Endocr Rev. 2015;36(2):214–44.

    Article  CAS  PubMed  Google Scholar 

  114. Schoenmakers N, Alatzoglou KS, Chatterjee VK, Dattani MT. Recent advances in central congenital hypothyroidism. J Endocrinol. 2015;227(3):R51–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Koulouri O, Nicholas AK, Schoenmakers E, Mokrosinski J, Lane F, Cole T, Kirk J, Farooqi IS, Chatterjee VK, Gurnell M, Schoenmakers N. A novel thyrotropin-releasing hormone receptor missense mutation (P81R) in central congenital hypothyroidism. J Clin Endocrinol Metab. 2016;101(3):847–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Collu R, Tang J, Castagné J, Lagacé G, Masson N, Huot C, Deal C, Delvin E, Faccenda E, Eidne KA, Van Vliet G. A novel mechanism for isolated central hypothyroidism: inactivating mutations in the thyrotropin-releasing hormone receptor gene. J Clin Endocrinol Metab. 1997;82(5):1561–5.

    CAS  PubMed  Google Scholar 

  117. Bonomi M, Busnelli M, Beck-Peccoz P, Costanzo D, Antonica F, Dolci C, Pilotta A, Buzi F, Persani L. A family with complete resistance to thyrotropin-releasing hormone. N Engl J Med. 2009;360(7):731–4.

    Article  CAS  PubMed  Google Scholar 

  118. Rabeler R, Mittag J, Geffers L, Rüther U, Leitges M, Parlow AF, Visser TJ, Bauer K. Generation of thyrotropin-releasing hormone receptor 1-deficient mice as an animal model of central hypothyroidism. Mol Endocrinol. 2004;18(6):1450–60.

    Article  CAS  PubMed  Google Scholar 

  119. Fuku N, He ZH, Sanchis-Gomar F, Pareja-Galeano H, Tian Y, Arai Y, Abe Y, Murakami H, Miyachi M, Zempo H, Naito H, Yvert T, Verde Z, Venturini L, Fiuza-Luces C, Santos-Lozano A, Rodriguez-Romo G, Ricevuti G, Hirose N, Emanuele E, Garatachea N, Lucia A. Exceptional longevity and muscle and fitness related genotypes: a functional in vitro analysis and case-control association replication study with SNPs THRH rs7832552, IL6 rs1800795, and ACSL1 rs6552828. Front Aging Neurosci. 2015;7:59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Liu XG, Tan LJ, Lei SF, Liu YJ, Shen H, Wang L, Yan H, Guo YF, Xiong DH, Chen XD, Pan F, Yang TL, Zhang YP, Guo Y, Tang NL, Zhu XZ, Deng HY, Levy S, Recker RR, Papasian CJ, Deng HW. Genome-wide association and replication studies identified TRHR as an important gene for lean body mass. Am J Hum Genet. 2009;84(3):418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lunardi CC, Lima RM, Pereira RW, Leite TK, Siqueira AB, Oliveira RJ. Association between polymorphisms in the TRHR gene, fat-free mass, and muscle strength in older women. Age (Dordr). 2013;35(6):2477–83.

    Article  CAS  Google Scholar 

  122. Shimogori T, Lee DA, Miranda-Angulo A, Yang Y, Wang H, Jiang L, Yoshida AC, Kataoka A, Mashiko H, Avetisyan M, Qi L, Qian J, Blackshaw S. A genomic atlas of mouse hypothalamic development. Nat Neurosci. 2010;13(6):767–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Díaz C, Morales-Delgado N, Puelles L. Ontogenesis of peptidergic neurons within the genoarchitectonic map of the mouse hypothalamus. Front Neuroanat. 2014;8:162.

    PubMed  Google Scholar 

  124. Pearson CA, Placzek M. Development of the medial hypothalamus: forming a functional hypothalamic-neurohypophyseal interface. Curr Top Dev Biol. 2013;106:49–88.

    Article  CAS  PubMed  Google Scholar 

  125. Guerra-Crespo M, Pérez-Monter C, Janga SC, Castillo-Ramírez S, Gutiérrez-Rios RM, Joseph-Bravo P, Pérez-Martínez L, Charli JL. Transcriptional profiling of fetal hypothalamic TRH neurons. BMC Genomics. 2011;12:222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Martínez-Armenta M. Díaz de León-Guerrero S, Catalán a, Alvarez-Arellano L, Uribe RM, Subramaniam M, Charli JL, Pérez-Martínez L. TGFβ2 regulates hypothalamic Trh expression through the TGFβ inducible early gene-1 (TIEG1) during fetal development. Mol Cell Endocrinol. 2015;400:129–39.

    Article  PubMed  CAS  Google Scholar 

  127. Moog NK, Entringer S, Heim C, Wadhwa PD, Kathmann N, Buss C. Influence of maternal thyroid hormones during gestation on fetal brain development. Neuroscience (2015). doi:10.1016/j.neuroscience.2015.09.070.

    PubMed  Google Scholar 

  128. Korevaar TI, Chaker L, Jaddoe VW, Visser TJ, Medici M, Peeters RP. Maternal and birth characteristics are determinants of offspring thyroid function. J Clin Endocrinol Metab. 2016;101(1):206–13.

    Article  CAS  PubMed  Google Scholar 

  129. Gali Ramamoorthy T, Begum G, Harno E, White A. Developmental programming of hypothalamic neuronal circuits: impact on energy balance control. Front Neurosci. 2015;9:126.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Lecoutre S, Breton C. Maternal nutritional manipulations program adipose tissue dysfunction in offspring. Front Physiol. 2015;6:158.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Markakis EA, Swanson LW. Spatiotemporal patterns of secretomotor neuron generation in the parvicellular neuroendocrine system. Brain Res Brain Res Rev. 1997;24(2–3):255–91.

    Article  CAS  PubMed  Google Scholar 

  132. Bradley DJ, Towle HC, Young WS, 3rd Spatial and temporal expression of alpha- and beta-thyroid hormone receptor mRNAs, including the beta 2-subtype, in the developing mammalian nervous system. J Neurosci 1992; 12(6):2288–2302.

  133. Burgunder JM, Taylor T. Ontogeny of thyrotropin-releasing hormone gene expression in the rat diencephalon. Neuroendocrinology. 1989;49(6):631–40.

    Article  CAS  PubMed  Google Scholar 

  134. Vargas MA, Herrera J, Uribe RM, Charli JL, Joseph-Bravo P. Ontogenesis of pyroglutamyl peptidase II activity in rat brain, adenohypophysis and pancreas. Brain Res Dev Brain Res. 1992;66(2):251–6.

    Article  CAS  PubMed  Google Scholar 

  135. Oliver C, Giraud P, Lissitzky JC, Contye-Devolx B, Gillioz P. Influence of thyrotropin-releasing hormone on the secretion of thyrotropin in neonatal rats. Endocrinology. 1981;108(1):179–82.

    Article  CAS  PubMed  Google Scholar 

  136. Strbak V, Greer MA. Thyrotropin secretory response to thyrotropin-releasing hormone in the hypothyroid perinatal rat: further evidence of thyrotrophs independence of the hypothalamus during early ontogenesis. Endocrinology. 1981;108(4):1403–6.

    Article  CAS  PubMed  Google Scholar 

  137. Kaplan MM, Yaskoski KA. Maturational patterns of iodothyronine phenolic and tyrosyl ring deiodinase activities in rat cerebrum, cerebellum, and hypothalamus. J Clin Invest. 1981;67(4):1208–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Guadaño-Ferraz A, Obregón MJ, St Germain DL, Bernal J. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc Natl Acad Sci U S A. 1997;94(19):10391–6.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Rodríguez-García M, Jolín T, Santos A, Pérez-Castillo A. Effect of perinatal hypothyroidism on the developmental regulation of rat pituitary growth hormone and thyrotropin genes. Endocrinology. 1995;136(10):4339–50.

    PubMed  Google Scholar 

  140. Taylor T, Gyves P, Burgunder JM. Thyroid hormone regulation of TRH mRNA levels in rat paraventricular nucleus of the hypothalamus changes during ontogeny. Neuroendocrinology. 1990;52(3):262–7.

    Article  CAS  PubMed  Google Scholar 

  141. Walker P, Coulombe P, Dussault JH. Effects of triiodothyronine on thyrotropin-releasing hormone-induced thyrotropin release in the neonatal rat. Endocrinology. 1980;107(6):1731–7.

    Article  CAS  PubMed  Google Scholar 

  142. Mohácsik P, Füzesi T, Doleschall M, Szilvásy-Szabó A, Vancamp P, Hadadi É, Darras VM, Fekete C, Gereben B. Increased thyroid hormone activation accompanies the formation of thyroid hormone-dependent negative feedback in developing chicken hypothalamus. Endocrinology. 2016;157(3):1211–21.

    Article  PubMed  CAS  Google Scholar 

  143. Maggi R, Zasso J, Conti L. Neurodevelopmental origin and adult neurogenesis of the neuroendocrine hypothalamus. Front Cell Neurosci. 2015;8:440.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Rützel H, Schiebler TH. Prenatal and early postnatal development of the glial cells in the median eminence of the rat. Cell Tissue Res. 1980;211(1):117–37.

    Article  PubMed  Google Scholar 

  145. Altman J, Bayer SA. Development of the diencephalon in the rat. III. Ontogeny of the specialized ventricular linings of the hypothalamic third ventricle. J Comp Neurol. 1978;182(4 Pt 2):995–1015.

    Article  CAS  PubMed  Google Scholar 

  146. Alkemade A. Thyroid hormone and the developing hypothalamus. Front Neuroanat. 2015;9:15.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Dearden L, Ozanne SE. Early life origins of metabolic disease: developmental programming of hypothalamic pathways controlling energy homeostasis. Front Neuroendocrinol. 2015;39:3–16.

    Article  PubMed  Google Scholar 

  148. Ralevski A, Horvath TL. Developmental programming of hypothalamic neuroendocrine systems. Front Neuroendocrinol. 2015;39:52–8.

    Article  CAS  PubMed  Google Scholar 

  149. Aláez C, Calvo R, Obregón MJ, Pascual-Leone AM. Thyroid hormones and 5'-deiodinase activity in neonatal undernourished rats. Endocrinology. 1992;130(2):773–9.

    PubMed  Google Scholar 

  150. Ayala-Moreno R, Racotta R, Anguiano B, Aceves C, Quevedo L. Perinatal undernutrition programmes thyroid function in the adult rat offspring. Br J Nutr. 2013;110(12):2207–15.

    Article  CAS  PubMed  Google Scholar 

  151. Kahr MK, Antony KM, DelBeccaro M, Hu M, Aagaard KM, Suter MA. Increasing maternal obesity is associated with alterations in both maternal and neonatal thyroid hormone levels. Clin Endocrinol. 2016;84(4):551–7.

    Article  CAS  Google Scholar 

  152. Franco JG, Fernandes TP, Rocha CP, Calviño C, Pazos-Moura CC, Lisboa PC, Moura EG, Trevenzoli IH. Maternal high-fat diet induces obesity and adrenal and thyroid dysfunction in male rat offspring at weaning. J Physiol. 2012;590(21):5503–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lisboa PC, Conceição EP, de Oliveira E, Moura EG. Postnatal overnutrition programs the thyroid hormone metabolism and function in adulthood. J Endocrinol. 2015;226(3):219–26.

  154. Suter MA, Sangi-Haghpeykar H, Showalter L, Shope C, Hu M, Brown K, Williams S, Harris RA, Grove KL, Lane RH, Aagaard KM. Maternal high-fat diet modulates the fetal thyroid axis and thyroid gene expression in a nonhuman primate model. Mol Endocrinol. 2012;26(12):2071–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Saben J, Kang P, Zhong Y, Thakali KM, Gomez-Acevedo H, Borengasser SJ, Andres A, Badger TM, Shankar K. RNA-seq analysis of the rat placentation site reveals maternal obesity-associated changes in placental and offspring thyroid hormone signaling. Placenta. 2014;35(12):1013–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Moisiadis VG, Matthews SG. Glucocorticoids and fetal programming part 1: outcomes. Nat Rev Endocrinol. 2014;10(7):391–402.

    Article  CAS  PubMed  Google Scholar 

  157. Carbone DL, Zuloaga DG, Lacagnina AF, McGivern RF, Handa RJ. Exposure to dexamethasone during late gestation causes female-specific decreases in core body temperature and prepro-thyrotropin-releasing hormone expression in the paraventricular nucleus of the hypothalamus in rats. Physiol Behav. 2012;108:6–12.

  158. Uribe RM, Zacarias M, Corkidi G, Cisneros M, Charli JL, Joseph-Bravo P. 17β-Oestradiol indirectly inhibits thyrotrophin-releasing hormone expression in the hypothalamic paraventricular nucleus of female rats and blunts thyroid axis response to cold exposure. J Neuroendocrinol. 2009;21(5):439–48.

    Article  CAS  PubMed  Google Scholar 

  159. Panagiotakopoulos L, Neigh GN. Development of the HPA axis: where and when do sex differences manifest? Front Neuroendocrinol. 2014;35(3):285–302.

    Article  CAS  PubMed  Google Scholar 

  160. Aréchiga-Ceballos F, Alvarez-Salas E, Matamoros-Trejo G, Amaya MI, García-Luna C, de Gortari P. Pro-TRH and pro-CRF expression in paraventricular nucleus of small litter-reared fasted adult rats. J Endocrinol. 2014;221(1):77–88.

    Article  PubMed  CAS  Google Scholar 

  161. Maccari S, Krugers HJ, Morley-Fletcher S, Szyf M, Brunton PJ. The consequences of early-life adversity: neurobiological, behavioural and epigenetic adaptations. J Neuroendocrinol. 2014;26(10):707–23.

    Article  CAS  PubMed  Google Scholar 

  162. Turecki G, Meaney MJ. Effects of the social environment and stress on glucocorticoid receptor Gene methylation: a systematic review. Biol Psychiatry. 2016;79(2):87–96.

    Article  CAS  PubMed  Google Scholar 

  163. Maniam J, Antoniadis C, Morris MJ. Early-Life Stress, HPA Axis Adaptation, and Mechanisms Contributing to Later Health Outcomes. Front Endocrinol (Lausanne). 2014;5:–73.

  164. Meaney MJ, Diorio J, Francis D, Weaver S, Yau J, Chapman K, Seckl JR. Postnatal handling increases the expression of cAMP-inducible transcription factors in the rat hippocampus: the effects of thyroid hormones and serotonin. J Neurosci. 2000;20(10):3926–35.

    CAS  PubMed  Google Scholar 

  165. Hellstrom IC, Dhir SK, Diorio JC, Meaney MJ. Maternal licking regulates hippocampal glucocorticoid receptor transcription through a thyroid hormone-serotonin-NGFI-A signalling cascade. Philos Trans R Soc Lond Ser B Biol Sci. 2012;367(1601):2495–510.

    Article  CAS  Google Scholar 

  166. Jaimes-Hoy L, Gutiérrez-Mariscal M, Vargas Y, Pérez-Maldonado A, Romero F, Sánchez-Jaramillo E, Charli J-L, Joseph-Bravo P. Neonatal maternal separation alters, in a sex specific manner, the expression of TRH, of TRH-degrading ectoenzyme in the rat hypothalamus, and the response of the thyroid axis to starvation. Endocrinology. 2016;157:32–53.

  167. Leach PT, Gould TJ. Thyroid hormone signaling: contribution to neural function, cognition, and relationship to nicotine. Neurosci Biobehav Rev. 2015;57:252–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lisboa PC, de Oliveira E, Manhães AC, Santos-Silva AP, Pinheiro CR, Younes-Rapozo V, Faustino LC, Ortiga-Carvalho TM, Moura EG. Effects of maternal nicotine exposure on thyroid hormone metabolism and function in adult rat progeny. J Endocrinol. 2015;224(3):315–25.

    Article  CAS  PubMed  Google Scholar 

  169. Kabir ER, Rahman MS, Rahman I. A review on endocrine disruptors and their possible impacts on human health. Environ Toxicol Pharmacol. 2015;40(1):241–58.

    Article  CAS  PubMed  Google Scholar 

  170. Dishaw LV, Macaulay LJ, Roberts SC, Stapleton HM. Exposures, mechanisms, and impacts of endocrine-active flame retardants. Curr Opin Pharmacol. 2014;19:125–33.

    Article  PubMed  CAS  Google Scholar 

  171. Préau L, Fini JB, Morvan-Dubois G, Demeneix B. Thyroid hormone signaling during early neurogenesis and its significance as a vulnerable window for endocrine disruption. Biochim Biophys Acta. 2015;1849(2):112–21.

    Article  PubMed  CAS  Google Scholar 

  172. Duntas LH. Chemical contamination and the thyroid. Endocrine. 2015;48(1):53–64.

    Article  CAS  PubMed  Google Scholar 

  173. Duntas LH, Stathatos N. Toxic chemicals and thyroid function: hard facts and lateral thinking. Rev Endocr Metab Disord 2016 Jan 23. [Epub ahead of print] PubMed

  174. Zoeller TR. Environmental chemicals targeting thyroid. Hormones (Athens). 2010;9(1):28–40.

    Article  Google Scholar 

  175. Vuong AM, Webster GM, Romano ME, Braun JM, Zoeller RT, Hoofnagle AN, Sjödin A, Yolton K, Lanphear BP, Chen A. Maternal Polybrominated diphenyl ether (PBDE) exposure and thyroid hormones in maternal and cord sera: the HOME study, Cincinnati. USA Environ Health Perspect. 2015;123(10):1079–85.

    PubMed  Google Scholar 

Download references

Acknowledgments

-Dirección General de Asuntos del Personal Académico-Universidad Nacional Autónoma de México, # IA201515 (LJH), # IN204316 (PJB), # IN208515 (JLC).

-Consejo Nacional de Ciencia y Tecnología, Mexico, #CB-180009 (PJB), # CB-154931 (JLC), # CB-254960 (JLC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Joseph-Bravo.

Ethics declarations

Conflict of interest statement

The authors declare no conflicts of interest.

Electronic supplementary material

Below are the links to the electronic supplementary material.

ESM 1

(DOCX 52.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph-Bravo, P., Jaimes-Hoy, L. & Charli, JL. Advances in TRH signaling. Rev Endocr Metab Disord 17, 545–558 (2016). https://doi.org/10.1007/s11154-016-9375-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-016-9375-y

Keywords

Navigation