Skip to main content

Advertisement

Log in

Neuroendocrinology of the skin

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The skin is considered the mirror of the soul and is affected by neurohormonal triggers, especially stress. Hair follicles, keratinocytes, mast cells, melanocytes, and sebocytes all express sex and stress hormones implicating them in a local “hypothalamic-pituitary-adrenal axis.” In particular, the peptides corticotropin-releasing hormone (CRH) and neurotensin (NT) have synergistic action stimulating mast cells and are uniquely elevated in the serum of patients with skin diseases exacerbated by stress. Addressing the neurohormonal regulation of skin function could lead to new targets for effective treatment of inflammatory skin diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Al NF, Cox NH. Endocrinology and the skin. Br J Hosp Med (Lond). 2008;69(9):510–5.

    Article  Google Scholar 

  2. Chang FC, Opp MR. IL-1 is a mediator of increases in slow-wave sleep induced by CRH receptor blockade. Am J Physiol Regul Integr Comp Physiol. 2000;279:R793–802.

    CAS  PubMed  Google Scholar 

  3. Slominski A. Neuroendocrine system of the skin. Dermatology. 2005;211(3):199–208.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stuttgen G. Zentralnervensystem and Talgsekretion. Arch Klin Exp Dermatol. 2016;219:795–9.

    Article  Google Scholar 

  5. Zouboulis CC, Seltmann H, Hiroi N, et al. Corticotropin-releasing hormone: an autocrine hormone that promotes lipogenesis in human sebocytes. Proc Natl Acad Sci U S A. 2002;99(10):7148–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zouboulis CC. The sebaceous gland. Hautarzt. 2010;61(6):467.

    Article  CAS  PubMed  Google Scholar 

  7. Paus R, Theoharides TC, Arck PC. Neuroimmunoendocrine circuitry of the “brain-skin connection”. Trends Immunol. 2006;27(1):32–9.

    Article  CAS  PubMed  Google Scholar 

  8. Chen Y, Lyga J. Brain-skin connection: stress, inflammation and skin aging. Inflamm Allergy Drug Targets. 2014;13(3):177–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Slominski AT, Zmijewski MA, Zbytek B, Tobin DJ, Theoharides TC, Rivier J. Key role of CRF in the skin stress response system. Endocr Rev. 2013;34(6):827–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Slominski A, Wortsman J, Luger T, Paus R, Solomon S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev. 2000;80:979–1020.

    CAS  PubMed  Google Scholar 

  11. Slominski AT, Zmijewski MA, Skobowiat C, Zbytek B, Slominski RM, Steketee JD. Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system. Adv Anat Embryol Cell Biol. 2012;212:v. vii, 1-v, vii115.

    PubMed  PubMed Central  Google Scholar 

  12. Slominski A, Paus R, Mazurkiewicz J. Proopiomelanocortin expression in the skin during induced hair growth in mice. Experientia. 1992;48:50–4.

    Article  CAS  PubMed  Google Scholar 

  13. Slominski A, Mihm MC. Potential mechanism of skin response to stress. Int J Dermatol. 1996;35(12):849–51.

    Article  CAS  PubMed  Google Scholar 

  14. Slominski A. Identification of beta-endorphin, alpha-MSH and ACTH peptides in cultured human melanocytes, melanoma and squamous cell carcinoma cells by RP-HPLC. Exp Dermatol. 1998;7(4):213–6.

    Article  CAS  PubMed  Google Scholar 

  15. Slominski A, Paus R, Wortsman J. On the potential role of proopiomelanocortin in skin physiology and pathology. Mol Cell Endocrinol. 1993;93:C1–6.

    Article  CAS  PubMed  Google Scholar 

  16. Slominski A, Ermak G, Mazurkiewicz JE, Baker J, Wortsman J. Characterization of corticotropin-releasing hormone (CRH) in human skin. J Clin Endocrinol Metab. 1998;83:1020–4.

    CAS  PubMed  Google Scholar 

  17. Slominski A, Ermak G, Hwang J, Chakraborty A, Mazurkiewicz JE, Mihm M. Proopiomelanocortin, corticotropin releasing hormone and corticotropin releasing hormone receptor genes are expressed in human skin. FEBS Lett. 1995;374:113–6.

    Article  CAS  PubMed  Google Scholar 

  18. Slominski A, Zbytek B, Szczesniewski A, et al. CRH stimulation of corticosteroids production in melanocytes is mediated by ACTH. Am J Physiol Endocrinol Metab. 2005;288(4):E701–6.

    Article  CAS  PubMed  Google Scholar 

  19. Slominski A, Zbytek B, Semak I, Sweatman T, Wortsman J. CRH stimulates POMC activity and corticosterone production in dermal fibroblasts. J Neuroimmunol. 2005;162(1-2):97–102.

    Article  CAS  PubMed  Google Scholar 

  20. Slominski AT, Roloff B, Zbytek B, et al. Corticotropin releasing hormone and related peptides can act as bioregulatory factors in human keratinocytes. In Vitro Cell Dev Biol Anim. 2000;36:211–6.

    Article  CAS  PubMed  Google Scholar 

  21. Slominski A, Zbytek B, Pisarchik A, Slominski RM, Zmijewski MA. CRH functions as a growth factor/cytokine in the skin. J Cell Physiol. 2006;206(3):780–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Slominski A, Wortsman J, Kohn L, et al. Expression of hypothalamic-pituitary-thyroid axis related genes in the human skin. J Invest Dermatol. 2002;119:1449–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Slominski A, Wortsman J, Linton E, Pisarchik A, Zbytek B. The skin as a model for the immunodulatory effects of corticotropin-releasing hormone. In: Schaffer M, Stein C, editors. Mind over matter-regulation of peripheral inflammation by the CNS. Basel: Birkahauser Verlag; 2003. p. 149–76.

    Chapter  Google Scholar 

  24. Paus R, Langan EA, Vidali S, Ramot Y, Andersen B. Neuroendocrinology of the hair follicle: principles and clinical perspectives. Trends Mol Med. 2014;20(10):559–70.

    Article  CAS  PubMed  Google Scholar 

  25. Roloff B, Fechner K, Slominski A, et al. Hair cycle-dependent expression of corticotropin-releasing factor (CRF) and CRF receptors in murine skin. FASEB J. 1998;12:287–97.

    CAS  PubMed  Google Scholar 

  26. Donelan J, Marchand J, Kempuraj D, Papadopoulou N, Theoharides TC. Perifollicular and perivascular mouse skin mast cells express corticotropin-releasing hormone receptor. J Inv Dermatol. 2006;126:929–32.

    Article  CAS  Google Scholar 

  27. Ito N, Sugawara K, Bodo E, et al. Corticotropin-releasing hormone stimulates the in situ generation of mast cells from precursors in the human hair follicle mesenchyme. J Invest Dermatol. 2010;130(4):995–1004.

    Article  CAS  PubMed  Google Scholar 

  28. Ito N, Ito T, Kromminga A, et al. Human hair follicles display a functional equivalent of the hypothalamic-pituitary-adrenal axis and synthesize cortisol. FASEB J. 2005;19(10):1332–4.

    CAS  PubMed  Google Scholar 

  29. Gensure RC. Parathyroid hormone-related peptide and the hair cycle—is it the agonists or the antagonists that cause hair growth? Exp Dermatol. 2014;23(12):865–7.

    Article  CAS  PubMed  Google Scholar 

  30. Tsakalos ND, Theoharides TC, Kops SK, Askenase PW. Induction of mast cell secretion by parathormone. Biochem Pharmacol. 1983;32:355–60.

    Article  CAS  PubMed  Google Scholar 

  31. Alesci S, Bornstein SR. Neuroimmunoregulation of androgens in the adrenal gland and the skin. Horm Res. 2000;54(5-6):281–6.

    CAS  PubMed  Google Scholar 

  32. Poonawalla T, Kelly B. Urticaria : a review. Am J Clin Dermatol. 2009;10(1):9–21.

    Article  PubMed  Google Scholar 

  33. Zouboulis CC, Bohm M. Neuroendocrine regulation of sebocytes—a pathogenetic link between stress and acne. Exp Dermatol. 2004;13 Suppl 4:31–5.

    Article  CAS  PubMed  Google Scholar 

  34. Elewa RM, Abdallah M, Youssef N, Zouboulis CC. Aging-related changes in cutaneous corticotropin-releasing hormone system reflect a defective neuroendocrine-stress response in aging. Rejuvenation Res. 2012;15(4):366–73.

    Article  CAS  PubMed  Google Scholar 

  35. Kono M, Nagata H, Umemura S, Kawana S, Osamura RY. In situ expression of corticotropin-releasing hormone (CRH) and proopiomelanocortin (POMC) genes in human skin. FASEB J. 2001;15(12):2297–9.

    CAS  PubMed  Google Scholar 

  36. Ganceviciene R, Bohm M, Fimmel S, Zouboulis CC. The role of neuropeptides in the multifactorial pathogenesis of acne vulgaris. Dermatoendocrinol. 2009;1(3):170–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zouboulis CC. Sebaceous gland receptors. Dermatoendocrinol. 2009;1(2):77–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Slominski A, Zbytek B, Nikolakis G, et al. Steroidogenesis in the skin: implications for local immune functions. J Steroid Biochem Mol Biol. 2013;137:107–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ganceviciene R, Graziene V, Fimmel S, Zouboulis CC. Involvement of the corticotropin-releasing hormone system in the pathogenesis of acne vulgaris. Br J Dermatol. 2009;160(2):345–52.

    Article  CAS  PubMed  Google Scholar 

  40. Ganceviciene R, Graziene V, Bohm M, Zouboulis CC. Increased in situ expression of melanocortin-1 receptor in sebaceous glands of lesional skin of patients with acne vulgaris. Exp Dermatol. 2007;16(7):547–52.

    Article  CAS  PubMed  Google Scholar 

  41. Bohm M, Schiller M, Stander S, et al. Evidence for expression of melanocortin-1 receptor in human sebocytes in vitro and in situ. J Invest Dermatol. 2002;118(3):533–9.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang L, Li WH, Anthonavage M, Eisinger M. Melanocortin-5 receptor: a marker of human sebocyte differentiation. Peptides. 2006;27(2):413–20.

    Article  PubMed  CAS  Google Scholar 

  43. Bohm M, Li Z, Ottaviani M, et al. Beta-endorphin modulates lipogenesis in human sebocytes. J Invest Dermatol. 2004;123:A10.

    Google Scholar 

  44. Stander S, Schmeltz M, Metze D, Luger T, Rulwied R. Distribution of cannabinoid receptor 1 (CB1) and 2 (CB2) on sensory nerve fibers and adnexal structures in human skin. J Dermatol Sci. 2005;38:177–88.

    Article  PubMed  CAS  Google Scholar 

  45. Theoharides TC, Cochrane DE. Critical role of mast cells in inflammatory diseases and the effect of acute stress. J Neuroimmunol. 2004;146(1-2):1–12.

    Article  CAS  PubMed  Google Scholar 

  46. Al’Abadie MS, Kent GG, Gawkrodger DJ. The relationship between stress and the onset and exacerbation of psoriasis and other skin conditions. Br J Dermatol. 1994;130(2):199–203.

    Article  PubMed  Google Scholar 

  47. Katsarou-Katsari A, Filippou A, Theoharides TC. Stress and inflammatory dermatoses. Int J Immunopathol Pharmacol. 1999;12:7–11.

    CAS  PubMed  Google Scholar 

  48. Griesemer RD. Emotionally triggered disease in a dermatologic practice. Phychiatr. 1978;8:407–12.

    Google Scholar 

  49. Graham DT, Wolf S. The relation of eczema to attitude and to vascular reactions of the human skin. J Lab Clin Med. 1953;42(2):238–54.

    CAS  PubMed  Google Scholar 

  50. Linnet J, Jemec GB. Anxiety level and severity of skin condition predicts outcome of psychotherapy in atopic dermatitis patients. Int J Dermatol. 2001;40(10):632–6.

    Article  CAS  PubMed  Google Scholar 

  51. Seiffert K, Hilbert E, Schaechinger H, Zouboulis CC, Deter HC. Psychophysiological reactivity under mental stress in atopic dermatitis. Dermatology. 2005;210(4):286–93.

    Article  PubMed  Google Scholar 

  52. Stauder A, Kovacs M. Anxiety symptoms in allergic patients: identification and risk factors. Psychosom Med. 2003;65(5):816–23.

    Article  PubMed  Google Scholar 

  53. Sugiura H, Uehara M. Mitosis of mast cells in skin lesions of atopic dermatitis. Acta Derm Venereol (Stockh). 1993;73(4):296–9.

    CAS  Google Scholar 

  54. Guttman-Yassky E, Nograles KE, Krueger JG. Contrasting pathogenesis of atopic dermatitis and psoriasis—part I: clinical and pathologic concepts. J Allergy Clin Immunol. 2011;127(5):1110–8.

    Article  PubMed  Google Scholar 

  55. Guttman-Yassky E, Nograles KE, Krueger JG. Contrasting pathogenesis of atopic dermatitis and psoriasis—part II: immune cell subsets and therapeutic concepts. J Allergy Clin Immunol. 2011;127(6):1420–32.

    Article  CAS  PubMed  Google Scholar 

  56. Slominski A. On the role of the corticotropin-releasing hormone signalling system in the aetiology of inflammatory skin disorders. Br J Dermatol. 2009;160(2):229–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Albanesi C. Keratinocytes in allergic skin diseases. Curr Opin Allergy Clin Immunol. 2010;10(5):452–6.

    Article  CAS  PubMed  Google Scholar 

  58. Rahman S, Collins M, Williams CM, Ma HL. The pathology and immunology of atopic dermatitis. Inflamm Allergy Drug Targets. 2011;10(6):486–96.

    Article  CAS  PubMed  Google Scholar 

  59. Stander S, Steinhoff M. Pathophysiology of pruritus in atopic dermatitis: an overview. Exp Dermatol. 2002;11:12–24.

    Article  CAS  PubMed  Google Scholar 

  60. Stander S, Luger TA. Itch in atopic dermatitis—pathophysiology and treatment. Acta Dermatovenerol Croat. 2010;18(4):289–96.

    PubMed  Google Scholar 

  61. Bonness S, Bieber T. Molecular basis of atopic dermatitis. Curr Opin Allergy Clin Immunol. 2007;7(5):382–6.

    Article  CAS  PubMed  Google Scholar 

  62. Harvima IT, Nilsson G, Suttle MM, Naukkarinen A. Is there a role for mast cells in psoriasis? Arch Dermatol Res. 2008;300(9):461–76.

    Article  CAS  PubMed  Google Scholar 

  63. Naukkarinen A, Jarvikallio A, Lakkakorpi J, Harvima IT, Harvima RJ, Horsmanheimo M. Quantitative histochemical analysis of mast cells and sensory nerves in psoriatic skin. J Pathol. 1996;180:200–5.

    Article  CAS  PubMed  Google Scholar 

  64. Jiang WY, Chattedee AD, Raychaudhuri SP, Raychaudhuri SK, Farber EM. Mast cell density and IL-8 expression in nonlesional and lesional psoriatic skin. Int J Dermatol. 2001;40(11):699–703.

    Article  CAS  PubMed  Google Scholar 

  65. Harvima IT, Viinamäki H, Naukkarinen A, Paukkonen K, Neittaanmäki H, Horsmanheimo M. Association of cutaneous mast cells and sensory nerves with psychic stress in psoriasis. Psychother Psychosom. 1993;60:168–76.

    Article  CAS  PubMed  Google Scholar 

  66. Groneberg DA, Bester C, Grutzkau A, et al. Mast cells and vasculature in atopic dermatitis—potential stimulus of neoangiogenesis. Allergy. 2005;60(1):90–7.

    Article  CAS  PubMed  Google Scholar 

  67. Damsgaard TE, Olesen AB, Srensen FB. Thestrup-Pedersen K, Schitz PO. Mast cells and atopic dermatitis. Stereological quantification of mast cells in atopic dermatitis and normal human skin. Arch Dermatol Res. 1997;289(5):256–60.

    Article  CAS  PubMed  Google Scholar 

  68. Sugiura H, Hirota Y, Uehara M. Heterogeneous distribution of mast cells in lichenified lesions of atopic dermatitis. Acta Derm Venereol Suppl (Stockh). 1989;144:115–8.

    CAS  Google Scholar 

  69. Remröd C, Lonne-Rahm S, Nordliond K. Study of substance P and its receptor neurokinin-1 in psoriasis and their relation to chronic stress and pruritus. Arch Dermatol Res. 2007;299:85–91.

    Article  PubMed  CAS  Google Scholar 

  70. Jarvikallio A, Harvima IT, Naukkarinen A. Mast cells, nerves and neuropeptides in atopic dermatitis and nummular eczema. Arch Dermatol Res. 2003;295(1):2–7.

    PubMed  Google Scholar 

  71. Christy AL, Brown MA. The multitasking mast cell: positive and negative roles in the progression of autoimmunity. J Immunol. 2007;179(5):2673–9.

    Article  CAS  PubMed  Google Scholar 

  72. Theoharides TC, Zhang B, Kempuraj D, et al. IL-33 augments substance P-induced VEGF secretion from human mast cells and is increased in psoriatic skin. Proc Natl Acad Sci U S A. 2010;107(9):4448–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rozniecki JJ, Dimitriadou V, Lambracht-Hall M, Pang X, Theoharides TC. Morphological and functional demonstration of rat dura mast cell-neuron interactions in vitro and in vivo. Brain Res. 1999;849:1–15.

    Article  CAS  PubMed  Google Scholar 

  74. Theoharides TC, Singh LK, Boucher W, et al. Corticotropin-releasing hormone induces skin mast cell degranulation and increased vascular permeability, a possible explanation for its pro-inflammatory effects. Endocrinology. 1998;139:403–13.

    CAS  PubMed  Google Scholar 

  75. Crompton R, Clifton VL, Bisits AT, Read MA, Smith R, Wright IM. Corticotropin-releasing hormone causes vasodilation in human skin via mast cell-dependent pathways. J Clin Endocrinol Metab. 2003;88:5427–32.

    Article  CAS  PubMed  Google Scholar 

  76. Cao J, Papadopoulou N, Kempuraj D, et al. Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor. J Immunol. 2005;174(12):7665–75.

    Article  CAS  PubMed  Google Scholar 

  77. Slominski A, Wortsman J. Neuroendocrinology of the skin. Endocr Rev. 2000;21:457–87.

    CAS  PubMed  Google Scholar 

  78. Cao J, Boucher W, Donelan JM, Theoharides TC. Acute stress and intravesical corticotropin-releasing hormone induces mast cell-dependent vascular endothelial growth factor release from mouse bladder explants. J Urol. 2006;176:1208–13.

    Article  CAS  PubMed  Google Scholar 

  79. Kandere-Grzybowska K, Gheorghe D, Priller J, et al. Stress-induced dura vascular permeability does not develop in mast cell-deficient and neurokinin-1 receptor knockout mice. Brain Res. 2003;980:213–20.

    Article  CAS  PubMed  Google Scholar 

  80. Ercan F, San T, Cavdar S. The effects of cold-restraint stress on urinary bladder wall compared with interstitial cystitis morphology. Urol Res. 1999;27:454–61.

    Article  CAS  PubMed  Google Scholar 

  81. Spanos C, Pang X, Ligris K, et al. Stress-induced bladder mast cell activation: implications for interstitial cystitis. J Urol. 1997;157:669–72.

    Article  CAS  PubMed  Google Scholar 

  82. Theoharides TC, Sant GR. Neuroimmune connections and regulation of function in the urinary bladder. In: Bienenstock J, Goetzl E, Blennerhassett M, editors. Autonomic neuroimmunology. Lausanne: Hardwood Academic Publishers; 2003. p. 345–69.

    Chapter  Google Scholar 

  83. Kaneko K, Kawana S, Arai K, Shibasaki T. Corticotropin-releasing factor receptor type 1 is involved in the stress-induced exacerbation of chronic contact dermatitis in rats. Exp Dermatol. 2003;12:47–52.

    Article  CAS  PubMed  Google Scholar 

  84. Theoharides TC, Donelan JM, Papadopoulou N, Cao J, Kempuraj D, Conti P. Mast cells as targets of corticotropin-releasing factor and related peptides. Trends Pharmacol Sci. 2004;25(11):563–8.

    Article  CAS  PubMed  Google Scholar 

  85. O’Kane M, Murphy EP, Kirby B. The role of corticotropin-releasing hormone in immune-mediated cutaneous inflammatory disease. Exp Dermatol. 2006;15(3):143–53.

    Article  PubMed  Google Scholar 

  86. Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med. 1995;332:1351–62.

    Article  CAS  PubMed  Google Scholar 

  87. Slominski A, Zbytek B, Zmijewski M, et al. Corticotropin releasing hormone and the skin. Front Biosci. 2006;11:2230–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Slominski A, Wortsman J, Pisarchik A, et al. Cutaneous expression of corticotropin-releasing hormone (CRH), urocortin, and CRH receptors. FASEB J. 2001;15:1678–93.

    Article  CAS  PubMed  Google Scholar 

  89. Karalis K, Louis JM, Bae D, Hilderbrand H, Majzoub JA. CRH and the immune system. J Neuroimmunol. 1997;72:131–6.

    Article  CAS  PubMed  Google Scholar 

  90. Kempuraj D, Papadopoulou NG, Lytinas M, et al. Corticotropin-releasing hormone and its structurally related urocortin are synthesized and secreted by human mast cells. Endocrinology. 2004;145:43–8.

    Article  CAS  PubMed  Google Scholar 

  91. Bossi F, Frossi B, Radillo O, et al. Mast cells are critically involved in serum-mediated vascular leakage in chronic urticaria beyond high-affinity IgE receptor stimulation. Allergy. 2011;66:1538–45.

    Article  CAS  PubMed  Google Scholar 

  92. Lytinas M, Kempuraj D, Huang M, Boucher W, Esposito P, Theoharides TC. Acute stress results in skin corticotropin-releasing hormone secretion, mast cell activation and vascular permeability, an effect mimicked by intradermal corticotropin-releasing hormone and inhibited by histamine-1 receptor antagonists. Int Arch Allergy Immunol. 2003;130:224–31.

    Article  CAS  PubMed  Google Scholar 

  93. Donelan J, Boucher W, Papadopoulou N, Lytinas M, Papaliodis D, Theoharides TC. Corticotropin-releasing hormone induces skin vascular permeability through a neurotensin-dependent process. Proc Natl Acad Sci U S A. 2006;103:7759–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Buske-Kirschbaum A, Ebrecht M, Kern S, Gierens A, Hellhammer DH. Personality characteristics in chronic and non-chronic allergic conditions. Brain Behav Immun. 2008;22(5):762–8.

    Article  CAS  PubMed  Google Scholar 

  95. Theoharides TC, Kempuraj D, Marchand J, et al. Urticaria pigmentosa associated with acute stress and lesional skin mast cell expression of CRF-R1. Clin Exp Dermatol. 2008;34:e163–6.

    Article  PubMed  Google Scholar 

  96. Theoharides TC, Petra AI, Stewart JM, Tsilioni I, Panagiotidou S, Akin C. High serum corticotropin-releasing hormone (CRH) and bone marrow mast cell CRH receptor expression in a mastocytosis patient. J Allergy Clin Immunol. 2014;134(5):1197–9.

    Article  PubMed  Google Scholar 

  97. Liu FT, Goodarzi H, Chen HY. IgE, Mast cells, and eosinophils in atopic dermatitis. Clin Rev Allergy Immunol. 2011;41:298–310.

    Article  CAS  PubMed  Google Scholar 

  98. Bachelet I, Levi-Schaffer F, Mekori YA. Mast cells: not only in allergy. Immunol Allergy Clin North Am. 2006;26(3):407–25.

    Article  PubMed  Google Scholar 

  99. Galli SJ, Tsai M. Mast cells in allergy and infection: versatile effector and regulatory cells in innate and adaptive immunity. Eur J Immunol. 2010;40(7):1843–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Theoharides TC, Valent P, Akin C. Mast cells, mastocytosis, and related disorders. N Engl J Med. 2015;373(2):163–72.

    Article  CAS  PubMed  Google Scholar 

  101. Galli SJ, Grimbaldeston M, Tsai M. Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol. 2008;8(6):478–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Galli SJ, Nakae S, Tsai M. Mast cells in the development of adaptive immune responses. Nat Immunol. 2005;6(2):135–42.

    Article  CAS  PubMed  Google Scholar 

  103. Galli SJ, Tsai M. Mast cells: versatile regulators of inflammation, tissue remodeling, host defense and homeostasis. J Dermatol Sci. 2008;49(1):7–19.

    Article  CAS  PubMed  Google Scholar 

  104. Theoharides TC, Kalogeromitros D. The critical role of mast cell in allergy and inflammation. Ann NY Acad Sci. 2006;1088:78–99.

    Article  CAS  PubMed  Google Scholar 

  105. Cao J, Curtis CL, Theoharides TC. Corticotropin-releasing hormone induces vascular endothelial growth factor release from human mast cells via the cAMP/protein kinase A/p38 mitogen-activated protein kinase pathway. Mol Pharmacol. 2006;69(3):998–1006.

    CAS  PubMed  Google Scholar 

  106. Artuc M, Hermes B, Steckelings UM, Grutzkau A, Henz BM. Mast cells and their mediators in cutaneous wound healing—active participants or innocent bystanders? Exp Dermatol. 1999;8:1–16.

    Article  CAS  PubMed  Google Scholar 

  107. Puxeddu I, Ribatti D, Crivellato E, Levi-Schaffer F. Mast cells and eosinophils: a novel link between inflammation and angiogenesis in allergic diseases. J Allergy Clin Immunol. 2005;116(3):531–6.

    Article  CAS  PubMed  Google Scholar 

  108. Brown JM, Wilson TM, Metcalfe DD. The mast cell and allergic diseases: role in pathogenesis and implications for therapy. Clin Exp Allergy. 2008;38(1):4–18.

    CAS  PubMed  Google Scholar 

  109. Gordon JR, Galli SJ. Mast cells as a source of both preformed and immunologically inducible TNF-a/cachectin. Nature. 1990;346(6281):274–6.

    Article  CAS  PubMed  Google Scholar 

  110. Olszewski MB, Groot AJ, Dastych J, Knol EF. TNF trafficking to human mast cell granules: mature chain-dependent endocytosis. J Immunol. 2007;178(9):5701–9.

    Article  CAS  PubMed  Google Scholar 

  111. Migalovich-Sheikhet H, Friedman S, Mankuta D, Levi-Schaffer F. Novel identified receptors on mast cells. Front Immunol. 2012;3:238.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Abraham SN, St John AL. Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol. 2010;10(6):440–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang B, Alysandratos KD, Angelidou A, et al. Human mast cell degranulation and preformed TNF secretion require mitochondrial translocation to exocytosis sites: relevance to atopic dermatitis. J Allergy Clin Immunol. 2011;127(6):1522–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kritas SK, Caraffa A, Antinolfi P, et al. Nerve growth factor interactions with mast cells. Int J Immunopathol Pharmacol. 2014;27(1):15–9.

    CAS  PubMed  Google Scholar 

  115. Moussion C, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’? PLoS One. 2008;3(10):e3331.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Enoksson M, Lyberg K, Moller-Westerberg C, Fallon PG, Nilsson G, Lunderius-Andersson C. Mast cells as sensors of cell injury through IL-33 recognition. J Immunol. 2011;186(4):2523–8.

    Article  CAS  PubMed  Google Scholar 

  117. Chakraborty S, Kaushik DK, Gupta M, Basu A. Inflammasome signaling at the heart of central nervous system pathology. J Neurosci Res. 2010;88(8):1615–31.

    CAS  PubMed  Google Scholar 

  118. Mustain WC, Rychahou PG, Evers BM. The role of neurotensin in physiologic and pathologic processes. Curr Opin Endocrinol Diabetes Obes. 2011;18(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  119. Feldberg RS, Cochrane DE, Carraway RE, et al. Evidence for a neurotensin receptor in rat serosal mast cells. Inflamm Res. 1998;47:245–50.

    Article  CAS  PubMed  Google Scholar 

  120. Barrocas AM, Cochrane DE, Carraway RE, Feldberg RS. Neurotensin stimulation of mast cell secretion is receptor-mediated, pertussis-toxin sensitive and requires activation of phospholipase C. Immunopharmacology. 1999;41:131–7.

    Article  CAS  PubMed  Google Scholar 

  121. Carraway R, Cochrane DE, Lansman JB, Leeman SE, Paterson BM, Welch HJ. Neurotensin stimulates exocytotic histamine secretion from rat mast cells and elevates plasma histamine levels. J Physiol. 1982;323:403–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cochrane DE, Emigh C, Levine G, Carraway RE, Leeman SE. Neurotensin alters cutaneous vascular permeability and stimulates histamine release from isolated skin. Ann NY Acad Sci. 1982;400:396–7.

    Article  Google Scholar 

  123. Cochrane DE, Boucher W, Bibb P. Neurotensin stimulates histamine release in in vivo skin ‘blisters’ in rats: an effect inhibited by cromolyn or somatostatin. Int Arch Allergy Appl Immunol. 1986;80:225–30.

    Article  CAS  PubMed  Google Scholar 

  124. Singh LK, Pang X, Alexacos N, Letourneau R, Theoharides TC. Acute immobilization stress triggers skin mast cell degranulation via corticotropin-releasing hormone, neurotensin and substance P: a link to neurogenic skin disorders. Brain Behav Immun. 1999;13:225–39.

    Article  CAS  PubMed  Google Scholar 

  125. Cochrane DE, Carraway RE, Boucher W, Feldberg RS. Rapid degradation of neutotensin by stimulated rat mast cells. Peptides. 1991;12:1187–94.

    Article  CAS  PubMed  Google Scholar 

  126. Maurer M, Wedemeyer J, Metz M, et al. Mast cells promote homeostasis by limiting endothelin-1-induced toxicity. Nature. 2004;432:512–6.

    Article  CAS  PubMed  Google Scholar 

  127. Zhang B, Asadi S, Weng Z, Sismanopoulos N, Theoharides TC. Stimulated human mast cells secrete mitochondrial components that have autocrine and paracrine inflammatory actions. PLoS One. 2012;7(12):e49767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Asadi S, Theoharides TC. Corticotropin-releasing hormone and extracellular mitochondria augment IgE-stimulated human mast-cell vascular endothelial growth factor release, which is inhibited by luteolin. J Neuroinflam. 2012;9(1):85.

    Article  CAS  Google Scholar 

  129. Alysandratos KD, Asadi S, Angelidou A, et al. Neurotensin and CRH interactions augment human mast cell activation. PLoS One. 2012;7(11):e48934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Matsumoto I, Inoue Y, Shimada T, Aikawa T. Brain mast cells act as an immune gate to the hypothalamic-pituitary-adrenal axis in dogs. J Exp Med. 2001;194:71–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bugajski AJ, Chlap Z, Gadek-Michalska A, Borycz J, Bugajski J. Degranulation and decrease in histamine levels of thalamic mast cells coincides with corticosterone secretion induced by compound 48/80. Inflamm Res. 1995;44 Suppl 1:S50–1.

    Article  CAS  PubMed  Google Scholar 

  132. Kalogeromitros D, Syrigou EI, Makris M, et al. Nasal provocation of patients with allergic rhinitis and the hypothalamic-pituitary-adrenal axis. Ann Allergy, Asthma, Immunol. 2007;98:269–73.

    Article  CAS  Google Scholar 

  133. Malki A, Fiedler J, Fricke K, Ballweg I, Pfaffl MW, Krautwurst D. Class I odorant receptors, TAS1R and TAS2R taste receptors, are markers for subpopulations of circulating leukocytes. J Leukoc Biol. 2015;97(3):533–45.

    Article  CAS  PubMed  Google Scholar 

  134. Catini C, Legnaioli M. Role of mast cells in health: daily rhythmic variations in their number, exocytotic activity, histamine and serotonin content in the rat thyroid gland. Eur J Histochem. 1992;36(4):501–16.

    CAS  PubMed  Google Scholar 

  135. Molyva D, Kalokasidis K, Poulios C, et al. Rupatadine effectively prevents the histamine-induced up regulation of histamine H1R and bradykinin B2R receptor gene expression in the rat paw. Pharmacol Rep. 2014;66(6):952–5.

    Article  CAS  PubMed  Google Scholar 

  136. Nakao A, Nakamura Y, Shibata S. The circadian clock functions as a potent regulator of allergic reaction. Allergy. 2015;70(5):467–73.

    Article  CAS  PubMed  Google Scholar 

  137. Maldonado MD, Mora-Santos M, Naji L, Carrascosa-Salmoral MP, Naranjo MC, Calvo JR. Evidence of melatonin synthesis and release by mast cells. Possible modulatory role on inflammation. Pharmacol Res. 2010;62(3):282–7.

    Article  CAS  PubMed  Google Scholar 

  138. Metz M, Maurer M. Innate immunity and allergy in the skin. Curr Opin Immunol. 2009;21(6):687–93.

    Article  CAS  PubMed  Google Scholar 

  139. Metz M, Maurer M. Mast cells--key effector cells in immune responses. Trends Immunol. 2007;28(5):234–41.

    Article  CAS  PubMed  Google Scholar 

  140. Benoist C, Mathis D. Mast cells in autoimmune disease. Nature. 2002;420(6917):875–8.

    Article  CAS  PubMed  Google Scholar 

  141. Theoharides TC. Mast cell: a neuroimmunoendocrine master player. Int J Tissue React. 1996;18(1):1–21.

    CAS  PubMed  Google Scholar 

  142. Metz M, Grimbaldeston MA, Nakae S, Piliponsky AM, Tsai M, Galli SJ. Mast cells in the promotion and limitation of chronic inflammation. Immunol Rev. 2007;217:304–28.

    Article  CAS  PubMed  Google Scholar 

  143. Theoharides TC, Alysandratos KD, Angelidou A, et al. Mast cells and inflammation. Biochim Biophys Acta. 2012;1822(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  144. Greene LW, Asadipooya K, Corradi PF, Akin C. Endocrine manifestations of systemic mastocytosis in bone. Rev Endocr Metab Disord. 2016. May 30.

  145. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–45.

    Article  CAS  PubMed  Google Scholar 

  146. Nati M, Haddad D, Birkenfeld AL, Koch CA, Chavakis T, Chatzigeorgiou A. The role of immune cells in metabolism-related liver inflammation and development of non-alcoholic steatohepatitis (NASH). Rev Endocr Metab Disord. 2016;17(1):29–39.

    Article  CAS  PubMed  Google Scholar 

  147. Klöting N, Blüher M. Adipocyte dysfunction, inflammation and metabolic syndrome. Rev Endocr Metab Disord. 2014;15(4):277–87.

    Article  PubMed  CAS  Google Scholar 

  148. Kammoun HL, Kraakman MJ, Febbraio MA. Adipose tissue inflammation in glucose metabolism. Rev Endocr Metab Disord. 2014;15(1):31–44.

    Article  CAS  PubMed  Google Scholar 

  149. Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121(6):2111–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Taildeman J, Perez-Novo CA, Rottiers I, et al. Human mast cells express leptin and leptin receptors. Histochem Cell Biol. 2009;131(6):703–11.

    Article  CAS  PubMed  Google Scholar 

  151. Theoharides TC, Sismanopoulos N, Delivanis DA, Zhang B, Hatziagelaki EE, Kalogeromitros D. Mast cells squeeze the heart and stretch the gird: their role in atherosclerosis and obesity. Trends Pharmacol Sci. 2011;32(9):534–42.

    Article  CAS  PubMed  Google Scholar 

  152. Liu J, Divoux A, Sun J, et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med. 2009;15(8):940–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhou Y, Yu X, Chen H, et al. Leptin deficiency shifts mast cells toward anti-Inflammatory actions and protects mice from obesity and diabetes by polarizing M2 macrophages. Cell Metab. 2015;22(6):1045–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Eyster KM. The estrogen receptors: an overview from different perspectives. Methods Mol Biol. 2016;1366:1–10.

    Article  PubMed  Google Scholar 

  155. Raghunath RS, Venables ZC, Millington GW. The menstrual cycle and the skin. Clin Exp Dermatol. 2015;40(2):111–5.

    Article  CAS  PubMed  Google Scholar 

  156. Thornton MJ. Estrogens and aging skin. Dermatoendocrinol. 2013;5(2):264–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Janik ME, Belkot K, Przybylo M. Is oestrogen an important player in melanoma progression? Contemp Oncol (Pozn). 2014;18(5):302–6.

    Google Scholar 

  158. Bizzarri C, Bottaro G. Endocrine implications of neurofibromatosis 1 in childhood. Horm Res Paediatr. 2015;83(4):232–41.

    Article  CAS  PubMed  Google Scholar 

  159. Jabbour SA. Skin manifestations of hormone-secreting tumors. Dermatol Ther. 2010;23(6):643–50.

    Article  PubMed  Google Scholar 

  160. Kanaka-Gantenbein C, Kogia C, Abdel-Naser MB, Chrousos GP. Skin manifestations of growth hormone-induced diseases. Rev Endocr Metab Disord. 2016; in press

  161. Zaitsu M, Narita S, Lambert KC, et al. Estradiol activates mast cells via a non-genomic estrogen receptor-alpha and calcium influx. Mol Immunol. 2007;44(8):1977–85.

    Article  CAS  PubMed  Google Scholar 

  162. Narita S, Goldblum RM, Watson CS, et al. Environmental estrogens induce mast cell degranulation and enhance IgE-mediated release of allergic mediators. Environ Health Perspect. 2007;115(1):48–52.

    Article  CAS  PubMed  Google Scholar 

  163. Alevizos M, Karagkouni A, Kontou-Fili K, Theoharides TC. A probable case report of stress-induced anaphylaxis. Ann Allergy Asthma Immunol. 2014;112(4):383–4.

    Article  PubMed  Google Scholar 

  164. Jensen F, Woudwyk M, Teles A, et al. Estradiol and progesterone regulate the migration of mast cells from the periphery to the uterus and induce their maturation and degranulation. PLoS One. 2010;5(12):e14409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Jaiswal K, Krishna A. Effects of hormones on the number, distribution and degranulation of mast cells in the ovarian complex of mice. Acta Physiol Hung. 1996;84(2):183–90.

    CAS  PubMed  Google Scholar 

  166. Theoharides TC, Pang X, Letourneau R, Sant GR. Interstitial cystitis: a neuroimmunoendocrine disorder. Ann NY Acad Sci. 1998;840:619–34.

    Article  CAS  PubMed  Google Scholar 

  167. Spanos C, El-Mansoury M, Letourneau RJ, et al. Carbachol-induced activation of bladder mast cells is augmented by estradiol—implications for interstitial cystitis. Urology. 1996;48:809–16.

    Article  CAS  PubMed  Google Scholar 

  168. Pang X, Cotreau-Bibbo MM, Sant GR, Theoharides TC. Bladder mast cell expression of high affinity estrogen receptors in patients with interstitial cystitis. Br J Urol. 1995;75:154–61.

    Article  CAS  PubMed  Google Scholar 

  169. Hox V, Desai A, Bandara G, Gilfillan AM, Metcalfe DD, Olivera A. Estrogen increases the severity of anaphylaxis in female mice through enhanced endothelial nitric oxide synthase expression and nitric oxide production. J Allergy Clin Immunol. 2015;135(3):729–36.

    Article  CAS  PubMed  Google Scholar 

  170. Zhao XJ, McKerr G, Dong Z, et al. Expression of oestrogen and progesterone receptors by mast cells alone, but not lymphocytes, macrophages or other immune cells in human upper airways. Thorax. 2001;56(3):205–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Vasiadi M, Kempuraj D, Boucher W, Kalogeromitros D, Theoharides TC. Progesterone inhibits mast cell secretion. Int J Immunopath Pharmacol. 2006;19:787–94.

    CAS  Google Scholar 

  172. Vliagoftis H, Dimitriadou V, Theoharides TC. Progesterone triggers selective mast cell secretion of 5-hydroxytryptamine. Int Arch Allergy Appl Immunol. 1990;93(2-3):113–9.

    Article  CAS  PubMed  Google Scholar 

  173. Guhl S, Artuc M, Zuberbier T, Babina M. Testosterone exerts selective anti-inflammatory effects on human skin mast cells in a cell subset dependent manner. Exp Dermatol. 2012;21(11):878–80.

    Article  CAS  PubMed  Google Scholar 

  174. Kriegsfeld LJ, Hotchkiss AK, Demas GE, Silverman AJ, Silver R, Nelson RJ. Brain mast cells are influenced by chemosensory cues associated with estrus induction in female prairie voles (Microtus ochrogaster). Horm Behav. 2003;44(5):377–84.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Silverman AJ, Millar RP, King JA, Zhuang X, Silver R. Mast cells containing gonadotropin-releasing hormone-like immunoreactivity in the brain of doves. Proc Natl Acad Sci U S A. 1994;91:3675–99.

    Article  Google Scholar 

  176. Silver R, Ramos CL, Silverman AJ. Sexual behavior triggers the appearance of non-neuronal cells containing gonadotropin-releasing hormone-like immunoreactivity. J Neuroendocrinol. 1991;4:1–3.

    Google Scholar 

  177. Aydin Y, Tuncel N, Gurer F, Tuncel M, Kosar M, Oflaz G. Ovarian, uterine and brain mast cells in female rats: cyclic changes and contribution to tissue histamine. Comp Biochem Physiol A Mol Integr Physiol. 1998;120(2):255–62.

    Article  CAS  PubMed  Google Scholar 

  178. Rudolph MI, Oviedo C, Vega E, et al. Oxytocin inhibits the uptake of serotonin into uterine mast cells. J Pharmacol Exp Ther. 1998;287(1):389–94.

    CAS  PubMed  Google Scholar 

  179. Hillhouse EW, Grammatopoulos DK. Role of stress peptides during human pregnancy and labour. Reproduction. 2002;124:323–9.

    Article  CAS  PubMed  Google Scholar 

  180. Reis FM, Petraglia F. The placenta as a neuroendocrine organ. Front Horm Res. 2001;27:216–28.

    Article  CAS  PubMed  Google Scholar 

  181. Lockwood CJ. Stress-associated preterm delivery: the role of corticotropin-releasing hormone. Am J Obstet Gynecol. 1999;180:S264–266.

    Article  CAS  PubMed  Google Scholar 

  182. Madhappan B, Kempuraj D, Christodoulou S, et al. High levels of intrauterine corticotropin-releasing hormone, urocortin, tryptase and IL-8 in spontaneous abortions. Endocrinology. 2003;144:2285–90.

    Article  CAS  PubMed  Google Scholar 

  183. Arck PC, Rose M, Hertwig K, Hagen E, Hildebrandt M, Klapp BF. Stress and immune mediators in miscarriage. Hum Reprod. 2001;16:1505–11.

    Article  CAS  PubMed  Google Scholar 

  184. Marx L, Arck P, Kieslich C, Mitterlechner S, Kapp M, Dietl J. Decidual mast cells might be involved in the onset of human first-trimester abortion. Am J Reprod Immunol. 1999;41:34–40.

    Article  CAS  PubMed  Google Scholar 

  185. Kempuraj D, Papadopoulou N, Stanford EJ, et al. Increased numbers of activated mast cells in endometriosis lesions positive for corticotropin-releasing hormone (CRH) and urocortin. Am J Reprod Immunol. 2004;52:267–75.

    Article  PubMed  Google Scholar 

  186. Cuevas M, Flores I, Thompson KJ, Ramos-Ortolaza DL, Torres-Reveron A, Appleyard CB. Stress exacerbates endometriosis manifestations and inflammatory parameters in an animal model. Reprod Sci. 2012;19(8):851–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theoharis C. Theoharides.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theoharides, T.C., Stewart, J.M., Taracanova, A. et al. Neuroendocrinology of the skin. Rev Endocr Metab Disord 17, 287–294 (2016). https://doi.org/10.1007/s11154-016-9369-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-016-9369-9

Keywords

Navigation