Skip to main content

Advertisement

Log in

Stress-related skin disorders

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Emerging research has suggested that the skin is not only a target of organismal distress but also an active participant of the stress response through production of local “HPA axis” components, peripheral nerve endings, and resident skin cells, including keratinocytes, mast cells, and immune/immune accessory cells. There are also bidirectional communication pathways between the brain and the skin, which play significant roles in integrating these interactions. In this review, we summarize the intricate relations between stress and several skin conditions. We have tried to identify the underlying mechanisms that link stress to the common dermatoses according to the latest scientific findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bolognia JL, Jorizzo JL, Rapini RP. Dermatology. 2nd ed. St Louis, MO: Mosby Elsevier; 2008.

    Google Scholar 

  2. Slominski AT, Zmijewski MA, Skobowiat C, Zbytek B, Slominski RM, Steketee JD. Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system. Adv Anat Embryol Cell Biol. 2012;212(v, vii):1–115.

    Article  Google Scholar 

  3. Elias PM, Choi EH. Interactions among stratum corneum defensive functions. Exp Dermatol. 2005;14:719–26.

    Article  PubMed  Google Scholar 

  4. Elias PM. The skin barrier as an innate immune element. Semin Immunopathol. 2007;29:3–14.

    Article  PubMed  Google Scholar 

  5. Feingold KR, Schmuth M, Elias PM. The regulation of permeability barrier homeostasis. J Invest Dermatol. 2007;127:1574–6.

    Article  CAS  PubMed  Google Scholar 

  6. Elias PM, Menon G, Wetzel BK, Williams J. Barrier requirements as the evolutionary “driver” of epidermal pigmentation in humans. Am J Hum Biol. 2010;22:526–37.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 2004;84:1155–228.

    Article  CAS  PubMed  Google Scholar 

  8. Stenn KS, Paus R. Controls of hair follicle cycling. Physiol Rev. 2001;81:449–94.

    CAS  PubMed  Google Scholar 

  9. Zouboulis CC, Baron JM, Böhm M, et al. Frontiers in sebaceous gland biology and pathology. Exp Dermatol. 2008;17:542–51.

    Article  CAS  PubMed  Google Scholar 

  10. Slominski A, Wortsman J. Neuroendocrinology of the skin. Endocr Rev. 2000;21:457–87.

    CAS  PubMed  Google Scholar 

  11. Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science. 1981;213:1394–7.

    Article  CAS  PubMed  Google Scholar 

  12. Rivier C, Vale W. Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature. 1983;305:325–7.

    Article  CAS  PubMed  Google Scholar 

  13. Munck A, Guyre PM, Holbrook NJ. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev. 1984;5:25–44.

    Article  CAS  PubMed  Google Scholar 

  14. Bamberger CM, Schulte HM, Chrousos GP. Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids. Endocr Rev. 1996;17:245–61.

    Article  CAS  PubMed  Google Scholar 

  15. Tanida M, Katsuyama M, Sakatani K. Relation between mental stress-induced prefrontal cortex activity and skin conditions: a near-infrared spectroscopy study. Brain Res. 2007;1184:210–6.

    Article  CAS  PubMed  Google Scholar 

  16. Dhabhar FS. Psychological stress and immunoprotection versus immunopathology in the skin. Clin Dermatol. 2013;31:18–30.

    Article  PubMed  Google Scholar 

  17. Skobowiat C, Dowdy JC, Sayre RM, Tuckey RC, Slominski A. Cutaneous hypothalamic-pituitaryadrenal axis homolog: regulation by ultraviolet radiation. Am J Physiol Endocrinol Metab. 2011;301:E484–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Slominski A, Mihm MC. Potential mechanism of skin response to stress. Int J Dermatol. 1996;35:849–51.

    Article  CAS  PubMed  Google Scholar 

  19. Slominski A, Zbytek B, Nikolakis G, Manna PR, Skobowiat C, et al. Steroidogenesis in the skin: implications for local immune functions. J Steroid Biochem Mol Biol. 2013;137:107–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ito N, Ito T, Kromminga A, Bettermann A, Takigawa M, et al. Human hair follicles display a functional equivalent of the hypothalamic-pituitary-adrenal axis and synthesize cortisol. FASEB J. 2005;19:1332–4.

    CAS  PubMed  Google Scholar 

  21. Slominski A, Zbytek B, Szczesniewski A, Semak I, Kaminski J, et al. CRH stimulation of corticosteroids production in melanocytes is mediated by ACTH. Am J Physiol Endocrinol Metab. 2005;288:E701–6.

    Article  CAS  PubMed  Google Scholar 

  22. McCarty R, Horwatt K, Konarska M. Chronic stress and sympathetic-adrenal medullary responsiveness. Soc Sci Med. 1988;26(3):333–41.

    Article  CAS  PubMed  Google Scholar 

  23. Sanders VM, Baker RA, Ramer-Quinn DS, Kasprowicz DJ, Fuchs BA, Street NE. Differential expression of the beta2-adrenergic receptor by Th1 and Th2 clones: implications for cytokine production and B cell help. J Immunol. 1997;158(9):4200–10.

    CAS  PubMed  Google Scholar 

  24. Marino F, Cosentino M. Adrenergic modulation of immune cells: an update. Amino Acids. 2013;45(1):55–71.

    Article  CAS  PubMed  Google Scholar 

  25. Grando SA, Pittelkow MR, Schallreuter KU. Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. J Invest Dermatol. 2006;126(9):1948–65.

    Article  CAS  PubMed  Google Scholar 

  26. Koizumi H, Tanaka H, Ohkawara A. beta-Adrenergic stimulation induces activation of protein kinase C and inositol 1,4,5-trisphosphate increase in epidermis. Exp Dermatol. 1997;6(3):128–32.

    Article  CAS  PubMed  Google Scholar 

  27. Botchkarev VA, Yaar M, Peters EM, Raychaudhuri SP, Botchkareva NV, Marconi A, et al. Neurotrophins in skin biology and pathology. J Invest Dermatol. 2006;126(8):1719–27.

    Article  CAS  PubMed  Google Scholar 

  28. Singh LK, Pang X, Alexacos N, Letourneau R, Theoharides TC. Acute immobilization stress triggers skin mast cell degranulation via corticotropin releasing hormone, neurotensin, and substance P: a link to neurogenic skin disorders. Brain Behav Immun. 1999;13(3):225–39.

    Article  CAS  PubMed  Google Scholar 

  29. Smith CH, Barker JN, Morris RW, MacDonald DM, Lee TH. Neuropeptides induce rapid expression of endothelial cell adhesion molecules and elicit granulocytic infiltration in human skin. J Immunol. 1993;151(6):3274–82.

    CAS  PubMed  Google Scholar 

  30. Slominski A, Wortsman J, Tuckey RC, Paus R. Differential expression of HPA axis homolog in the skin. Mol Cell Endocrinol. 2007;265–266:143–9.

    Article  PubMed  CAS  Google Scholar 

  31. Bodó E, Kany B, Gaspar E, et al. Thyroid-stimulating hormone, a novel, locally produced modulator of human epidermal functions, is regulated by thyrotropin-releasing hormone and thyroid hormones. Endocrinology. 2010;151:1633–42.

    Article  PubMed  CAS  Google Scholar 

  32. Slominski A, Tobin DJ, Zmijewski MA, Wortsman J, Paus R. Melatonin in the skin: synthesis, metabolism and functions. Trends Endocrinol Metab. 2008;19:17–24.

    Article  CAS  PubMed  Google Scholar 

  33. Gillbro JM, Marles LK, Hibberts NA, Schallreuter KU. Autocrine catecholamine biosynthesis and the β- adrenoceptor signal promote pigmentation in human epidermal melanocytes. J Invest Dermatol. 2004;123:346–53.

    Article  CAS  PubMed  Google Scholar 

  34. Slominski A, Zbytek B, Nikolakis G, et al. Steroidogenesis in the skin: implications for local immune functions.J Steroid Biochem Mol Biol. doi:10.1016/j.jsbmb.2013.02.006

  35. Slominski A, Wortsman J, Linton E, Pisarchik A, Zbytek B. The skin as a model for the immunomodulatory effects of corticotropin-releasing hormone. In: Schaefer M, Stein C, editors. Mind Over Matter— Regulation of Peripheral Inflammation by the CNS. Basel, Boston, Berlin: Birkhaeuser Verlag; 2003. p. 149–76.

    Chapter  Google Scholar 

  36. Slominski A. On the role of the corticotropin-releasing hormone signalling system in the aetiology of inflammatory skin disorders. Br J Dermatol. 2009;160:229–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Theoharides TC, Kalogeromitros D. The critical role of mast cells in allergy and inflammation. Ann NY Acad Sci. 2006;1088:78–99.

    Article  CAS  PubMed  Google Scholar 

  38. Ni C, Chiu MW. Psoriasis and comorbidities: links and risks [review]. Clin Cosmet Investig Dermatol. 2014;7:119–32. eCollection 2014.

    PubMed  PubMed Central  Google Scholar 

  39. Hall JM, Cruser D, Podawiltz A, et al. Psychological stress and the cutaneous immune response: roles of the HPA axis and the sympathetic nervous system in atopic dermatitis and psoriasis. Dermatol Res Pract. 2012;2012:403908. doi:10.1155/2012/403908.

  40. Rampton DS. The influence of stress on the development and severity of immune-mediated diseases. J Rheumatol Suppl. 2011;88:43–7. doi:10.3899/jrheum.110904.

    Article  PubMed  Google Scholar 

  41. Basavaraj KH, Navya MA, Rashmi R. Stress and quality of life in psoriasis: an update. Int J Dermatol. 2011;50:783–92. doi:10.1111/j.1365-4632.2010.04844.x.

    Article  PubMed  Google Scholar 

  42. Arnetz BB, Fjellner B, Eneroth P, Kallner A. Stress and psoriasis: psychoendocrine and metabolic reactions in psoriatic patients during standardized stressor exposure. Psychosom Med. 1985;47:528–41. doi:10.1097/00006842-198511000-00003.

    Article  CAS  PubMed  Google Scholar 

  43. Brunoni AR, Santos IS, Sabbag C, Lotufo PA, Benseñor IM. Psoriasis severity and hypothalamic-pituitary-adrenal axis function: results from the CALIPSO study. Braz J Med Biol Res. 2014;47(12):1102–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hellhammer DH, Wust S, Kudielka BM. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology. 2009;34:163–71. doi:10.1016/j.psyneuen.2008.10.026.

    Article  CAS  PubMed  Google Scholar 

  45. Kirschbaum C, Hellhammer DH. Salivary cortisol in psychoneuroendocrine research: recent developments and applications. Psychoneuroendocrinology. 1994;19:313–33. doi:10.1016/0306-4530(94)90013-2.

    Article  CAS  PubMed  Google Scholar 

  46. Kono M, Nagata H, Umemura S, Kawana S, Osamura RY. In situ expression of corticotropin-releasing hormone (CRH) and proopiomelanocortin (POMC) genes in human skin. FASEB J. 2001;15:2297–9.

    CAS  PubMed  Google Scholar 

  47. Kim JE, Cho DH, Kim HS, et al. Expression of the corticotropin-releasing hormone-proopiomelanocortin axis in the various clinical types of psoriasis. Exp Dermatol. 2007;16:104–9.

    Article  PubMed  CAS  Google Scholar 

  48. Tagen M, Stiles L, Kalogeromitros D, et al. Skin corticotropin-releasing hormone receptor expression in psoriasis. J Invest Dermatol. 2007;127:1789–91.

    Article  CAS  PubMed  Google Scholar 

  49. Cemil BC, Canpolat F, Yilmazer D, Eskioglu F, Alper M. The association of PASI scores with CRH-R1 expression in patients with psoriasis. Arch Dermatol Res. 2012;304:127–32.

    Article  CAS  PubMed  Google Scholar 

  50. Vasiadi M, Therianou A, Sideri K, et al. Increased serum CRH levels with decreased skin CRHR-1 gene expression in psoriasis and atopic dermatitis. J Allergy Clin Immunol. 2012;129:1410–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou C, Yu X, Cai D, Liu C, Li C. Role of corticotropin-releasing hormone and receptor in the pathogenesis of psoriasis. Med Hypotheses. 2009;73:513–5.

    Article  CAS  PubMed  Google Scholar 

  52. Ito N, Sugawara K, Bodó E, et al. Corticotropin-releasing hormone stimulates the in situ generation of mast cells from precursors in the human hair follicle mesenchyme. J Invest Dermatol. 2010;130:995–1004.

    Article  CAS  PubMed  Google Scholar 

  53. Cao J, Papadopoulou N, Kempuraj D, et al. Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor. J Immunol. 2005;174:7665–75.

    Article  CAS  PubMed  Google Scholar 

  54. Vasiadi M, Therianou A, Alysandratos KD, et al. Serum neurotensin (NT) is increased in psoriasis and NT induces vascular endothelial growth factor release from human mast cells. Br J Dermatol. 2012;166:1349–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cochrane DE, Carraway RE, Harrington K, Laudano M, Rawlings S, Feldberg RS. HMC-1 human mast cells synthesize neurotensin (NT) precursor, secrete bioactive NT-like peptide(s) and express NT receptor NTS1. Inflamm Res. 2011;60:1139–51.

    Article  CAS  PubMed  Google Scholar 

  56. Donelan J, Boucher W, Papadopoulou N, et al. Corticotropin-releasing hormone induces skin vascular permeability through a neurotensin-dependent process. Proc Natl Acad Sci U S A. 2006;103:7759–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. de Brouwer SJM, van Middendorp H, Stormink C, Kraaimaat FW, Sweep FCGJ, de Jong EMGJ, et al. The psychophysiological stress response in psoriasis and rheumatoid arthritis. Br J Dermatol. 2014;170:824–31.

    Article  PubMed  Google Scholar 

  58. Brunoni AR, Lotufo PA, Sabbag C, Goulart AC, Santos IS, Benseñor IM. Decreased brain-derived neurotrophic factor plasma levels in psoriasis patients. Braz J Med Biol Res. 2015;48(8):711–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006;59:1116–27. doi:10.1016/j.biopsych.2006.02.013.

    Article  CAS  PubMed  Google Scholar 

  60. Bath KG, Schilit A, Lee FS. Stress effects on BDNF expression: effects of age, sex, and form of stress. Neuroscience. 2013;239:149–56. doi:10.1016/j.neuroscience.2013.01.074.

    Article  CAS  PubMed  Google Scholar 

  61. Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med. 2009;361:496–509.

    Article  CAS  PubMed  Google Scholar 

  62. Truzzi F, Marconi A, Atzei P, Panza MC, Lotti R, Dallaglio K, et al. p75 neurotrophin receptor mediates apoptosis in transit-amplifying cells and its overexpression restores cell death in psoriatic keratinocytes. Cell Death Differ. 2011;18:948–58. doi:10.1038/cdd.2010.162.

    Article  CAS  PubMed  Google Scholar 

  63. Consoli SM, Rolhion S, Martin C, Ruel K, Cambazard F, Pellet J, et al. Low levels of emotional awareness predict a better response to dermatological treatment in patients with psoriasis. Dermatology. 2006;212:128–36. doi:10.1159/000090653.

    Article  PubMed  Google Scholar 

  64. Grewe M, Bruijnzeel-Koomen CA, Schopf E, et al. A role for Th1 and Th2 cells in the immunopathogenesis of atopic dermatitis. Immunol Today. 1998;19(8):359–61.

    Article  CAS  PubMed  Google Scholar 

  65. Brodin MB. Neurotic excoriations. J Am Acad Dermatol. 2010;63(2):341–2.

    Article  PubMed  Google Scholar 

  66. Shimoda T, Liang Z, Suzuki H, et al. Inhibitory effects of antipsychotic and anxiolytic agents on stress-induced degranulation of mouse dermal mast cells: experimental dermatology. Clin Exp Dermatol. 2010;35(5):531–6.

    Article  CAS  PubMed  Google Scholar 

  67. Garg A, Chren MM, Sands LP, et al. Psychological stress perturbs epidermal permeability barrier homeostasis: implications for the pathogenesis of stressassociated skin disorders. Arch Dermatol. 2001;137(1):53–9.

    Article  CAS  PubMed  Google Scholar 

  68. Zbytek B, Pfeffer LM, Slominski AT. Corticotropin-releasing hormone inhibits nuclear factor-kB pathway in human HaCaT keratinocytes. J Invest Dermatol. 2003;121:1496–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Park HJ, Kim HJ, Lee JH, et al. Corticotropin-releasing hormone (CRH) downregulates interleukin-18 expression in human HaCaT keratinocytes by activation of p38 mitogen-activated protein kinase (MAPK) pathway. J Invest Dermatol. 2005;124:751–5.

    Article  CAS  PubMed  Google Scholar 

  70. Slominski A, Wortsman J, Pisarchik A, et al. Cutaneous expression of corticotropin-releasing hormone (CRH), urocortin, and CRH receptors. FASEB J. 2001;15:1678–93.

    Article  CAS  PubMed  Google Scholar 

  71. Zouboulis CC, Seltmann H, Hiroi N, et al. Corticotropin-releasing hormone: an autocrine hormone that promotes lipogenesis in human sebocytes. Proc Natl Acad Sci U S A. 2002;99:7148–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Slominski A, Zbytek B, Zmijewski M, et al. Corticotropin releasing hormone and the skin. Front Biosci. 2006;11:2230–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Catania A, Colombo G, Rossi C, et al. Antimicrobial properties of α-MSH and related synthetic melanocortins. ScientificWorldJournal. 2006;6:1241–6.

    Article  CAS  PubMed  Google Scholar 

  74. Rousseau K, Kauser S, Pritchard LE, et al. Proopiomelanocortin (POMC), the ACTH/melanocortin precursor, is secreted by human epidermal keratinocytes and melanocytes and stimulates melanogenesis. FASEB J. 2007;21:1844–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Keita AV, Soderholm JD, Ericson AC. Stress-induced barrier disruption of rat follicle-associated epithelium involves corticotropin-releasing hormone, acetylcholine, substance P, and mast cells. Neurogastroenterol Motil. 2010;22(770–778):e221–2.

    Google Scholar 

  76. Wallon C, Yang PC, Keita AV, et al. Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut. 2008;57:50–8.

    Article  CAS  PubMed  Google Scholar 

  77. Eva Milena Johanne P, Michenko A, Jörg K, Wolfgang K, Silke W, Volker N, et al. Mental Stress in Atopic Dermatitis – Neuronal Plasticity and the Cholinergic System Are Affected in Atopic Dermatitis and in Response to Acute Experimental Mental Stress in a Randomized Controlled Pilot Study. 2014. doi:10.1371/journal.pone.0113552.

    Google Scholar 

  78. Ofek K, Soreq H. Cholinergic involvement and manipulation approaches in multiple system disorders. Chem Biol Interact. 2013;203:113–9.

    Article  CAS  PubMed  Google Scholar 

  79. Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull. 2004;130:601–30.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Giovanoli S, Engler H, Engler A, Richetto J, Voget M, et al. Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science. 2013;339:1095–9.

    Article  CAS  PubMed  Google Scholar 

  81. Megumi M, Masaki Y, Chieko U, Teruhiko M, Tadamichi S. Stress Evaluation in Adult Patients with Atopic Dermatitis Using Salivary Cortisol. 2013. doi:10.1155/2013/138027.

    Google Scholar 

  82. Liezmann C, Klapp B, Peters EMJ. Stress, atopy and allergy: a re-evaluation from a psychoneuroimmunologic persepective. Dermato-Endocrinology. 2011;3(1):37–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Katayama I, Bae SJ, Hamasaki Y, et al. Stress response, tachykinin, and cutaneous inflammation. J Investig Dermatol Symp Proc. 2001;6(1):81–6.

    Article  CAS  PubMed  Google Scholar 

  84. Arck PC, Slominski A, Theoharides TC, Peters EMJ, Paus R. Neuroimmunology of stress: skin takes center stage. J Investig Dermatol. 2006;126(8):1697–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Silin P, Huali W, Qian W, Minxuan C, Weimin S, Jing S. Chronic Stress Suppresses the Expression of Cutaneous Hypothalamic–Pituitary–Adrenocortical Axis Elements and Melanogenesis. 2014. doi:10.1371/journal.pone.0098283.

    Google Scholar 

  86. Levine N, Sheftel SN, Eytan T, et al. Induction of skin tanning by subcutaneous administration of a potent synthetic melanotropin. JAMA. 1991;266:2730–6.

    Article  CAS  PubMed  Google Scholar 

  87. Wakamatsu K, Graham A, Cook D, Thody AJ. Characterisation of ACTH peptides in human skin and their activation of the melanocortin-1 receptor. Pigment Cell Res. 1997;10:288–97.

    Article  CAS  PubMed  Google Scholar 

  88. Tsatmalia M, Wakamatsu K, Graham AJ, Thody AJ. Skin POMC peptides. Their binding affinities and activation of the human MC1 receptor. Ann NY Acad Sci. 1999;885:466–9.

    Article  CAS  PubMed  Google Scholar 

  89. Tsatmali M, Ancans J, Thody AJ. Melanocyte function and its control by melanocortin peptides. J Histochem Cytochem. 2002;50:125–33.

    Article  CAS  PubMed  Google Scholar 

  90. Graham A, Westerhof W, Thody AJ. The expression of α-MSH by melanocytes is reduced in vitiligo. Ann NY Acad Sci. 1999;885:470–3.

    Article  CAS  PubMed  Google Scholar 

  91. Pichler R, Sfetsos K, Badics B, Gutenbrunner S, Aubock J. Vitiligo patients present lower plasma levels of α-melanotropin immunoreactivities. Neuropeptides. 2006;40:177–83.

    Article  CAS  PubMed  Google Scholar 

  92. Kingo K, Aunin E, Karelson M, et al. Gene expression analysis of melanocortin system in vitiligo. J Dermatol Sci. 2007;48:113–22.

    Article  CAS  PubMed  Google Scholar 

  93. Berson JF, Theos AC, Harper DC, Tenza D, Raposo G, Marks MS. Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J Cell Biol. 2003;161:521–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schallreuter KU, Bahadoran P, Picardo M, et al. Vitiligo pathogenesis: autoimmune disease, genetic defect, excessive reactive oxygen species, calcium imbalance, or what else? Exp Dermatol. 2008;17:139–40. discussion 141–160.

    Article  CAS  PubMed  Google Scholar 

  95. Spencer JD, Gibbons NC, Böhm M, Schallreuter KU. The Ca2+−binding capacity of epidermal furin is disrupted by H2O2-mediated oxidation in vitiligo. Endocrinology. 2008;149:1638–45.

    Article  CAS  PubMed  Google Scholar 

  96. Spencer JD, Gibbons NC, Rokos H, Peters EM, Wood JM, Schallreuter KU. Oxidative stress via hydrogen peroxide affects proopiomelanocortin peptides directly in the epidermis of patients with vitiligo. J Invest Dermatol. 2007;127:411–20.

    Article  CAS  PubMed  Google Scholar 

  97. Zbytek B, Pfeffer LM, Slominski AT. CRH inhibits NF-kB signaling in human melanocytes. Peptides. 2006;27:3276–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zouboulis CC, Eady A, Philpott M, et al. What is the pathogenesis of acne? Exp Dermatol. 2005;14:143–52.

    Article  CAS  PubMed  Google Scholar 

  99. Zouboulis CC, Böhm M. Neuroendocrine regulation of sebocytes—a pathogenetic link between stress and acne. Exp Dermatol. 2004;13 suppl 4:31–5.

    Article  CAS  PubMed  Google Scholar 

  100. Ganceviciene R, Graziene V, Fimmel S, Zouboulis CC. Involvement of the corticotropin-releasing hormone system in the pathogenesis of acne vulgaris. Br J Dermatol. 2009;160:345–52.

    Article  CAS  PubMed  Google Scholar 

  101. Zbytek B, Mysliwski A, Slominski A, Wortsman J, Wei ET, Mysliwska J. Corticotropin-releasing hormone affects cytokine production in human HaCaT keratinocytes. Life Sci. 2002;70(9):1013–21.

    Article  CAS  PubMed  Google Scholar 

  102. Zhang X, Lin S, Funk WE, Hou L. Environmental and occupational exposure to chemicals and telomere length in human studies. Occup Environ Med. 2013;70(10):743–9.

    Article  CAS  PubMed  Google Scholar 

  103. Boesten DM, de Vos-Houben JM, Timmermans L, den Hartog GJ, Bast A, Hageman GJ. Accelerated aging during chronic oxidative stress: a role for PARP-1. Oxid Med Cell Longev. 2013;2013:680414.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Tyrka AR, Price LH, Marsit C, Walters OC, Carpenter LL. Childhood adversity and epigenetic modulation of the leukocyte glucocorticoid receptor: preliminary findings in healthy adults. PLoS One. 2012;7(1):e30148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tyrka AR, Price LH, Kao HT, Porton B, Marsella SA, Carpenter LL. Childhood maltreatment and telomere shortening: preliminary support for an effect of early stress on cellular aging. Biol Psychiatry. 2010;67(6):531–4.

    Article  CAS  PubMed  Google Scholar 

  106. Oyetakin-White P, Koo B, Matsui M, Yarosh D, Fthenakis C, Cooper K, Baron E. In Effects of Sleep Quality on Skin Aging and Function, J. Invest. Dermatol. 2013: S126–S126

  107. Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, et al. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A. 2004;101(49):17312–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zbytek B, Pikula M, Slominski RM, Mysliwski A, Wei E, Wortsman J, et al. Corticotropinreleasing hormone triggers differentiation in HaCaT keratinocytes. Br J Dermatol. 2005;152(3):474–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Katsarou-Katsari A, Singh LK, Theoharides TC. Alopecia areata and affected skin CRH receptor upregulation induced by acute emotional stress. Dermatology. 2001;203:157–61.

    Article  CAS  PubMed  Google Scholar 

  110. Slominski A, Pisarchik A, Tobin DJ, Mazurkiewicz JE, Wortsman J. Differential expression of a cutaneous corticotropin-releasing hormone system. Endocrinology. 2004;145:941–50.

    Article  CAS  PubMed  Google Scholar 

  111. Katayama M, Aoki E, Suzuki H, Kawana S. Foot shock stress prolongs the telogen stage of the spontaneous hair cycle in a non-depilated mouse model. Exp Dermatol. 2007;16:553–60.

    Article  PubMed  Google Scholar 

  112. Stenzel-Poore MP, Cameron VA, Vaughan J, Sawchenko PE, Vale W. Development of Cushing’s syndrome in corticotropin-releasing factor transgenic mice. Endocrinology. 1992;130:3378–86.

    CAS  PubMed  Google Scholar 

  113. Wang L, Million M, Rivier J, et al. CRF receptor antagonist astressin-B reverses and prevents alopecia in CRF over-expressing mice. PLoS One. 2011;6:e16377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Willemsen R, Vanderlinden J, Roseeuw D, Haentjens P. Increased history of childhood and lifetime traumatic events among adults with alopecia areata. J Am Acad Dermatol. 2009;60:388–93.

    Article  PubMed  Google Scholar 

  115. van der Steen P, Boezeman J, Duller P, Happle R. Can alopecia areata be triggered by emotional stress? An uncontrolled evaluation of 178 patients with extensive hair loss. Acta Derm Venereol. 1992;72:279–80.

    PubMed  Google Scholar 

  116. Brajac I, Tkalcic M, Dragojevic DM, Gruber F. Roles of stress, stress perception and trait-anxiety in the onset and course of alopecia areata. J Dermatol. 2003;30:871–8.

    Article  PubMed  Google Scholar 

  117. Paus R, Arck P. Neuroendocrine perspectives in alopecia areata: does stress play a role? J Invest Dermatol. 2009;129:1324–6.

    Article  CAS  PubMed  Google Scholar 

  118. Hordinsky MK, Ericson ME. Relationship between follicular nerve supply and alopecia. Dermatol Clin. 1996;14:651–60.

    Article  CAS  PubMed  Google Scholar 

  119. Kim HS, Cho DH, Kim HJ, Lee JY, Cho BK, Park HJ. Immunoreactivity of corticotropin-releasing hormone, adrenocorticotropic hormone and α-melanocyte-stimulating hormone in alopecia areata. Exp Dermatol. 2006;15:515–22.

    Article  CAS  PubMed  Google Scholar 

  120. Peters EM, Liotiri S, Bodó E, et al. Probing the effects of stress mediators on the human hair follicle: substance P holds central position. Am J Pathol. 2007;171:1872–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gilhar A, Paus R, Kalish RS. Lymphocytes, neuropeptides, and genes involved in alopecia areata. J Clin Invest. 2007;117:2019–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Slominski A, Zbytek B, Pisarchik A, Slominski RM, Zmijewski MA, Wortsman J. CRH functions as a growth factor/cytokine in the skin. J Cell Physiol. 2006;206:780–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George P. Chrousos.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexopoulos, A., Chrousos, G.P. Stress-related skin disorders. Rev Endocr Metab Disord 17, 295–304 (2016). https://doi.org/10.1007/s11154-016-9367-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-016-9367-y

Keywords

Navigation