Skip to main content

Advertisement

Log in

The vascular endothelium in diabetes—a therapeutic target?

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Insulin resistance affects the vascular endothelium, and contributes to systemic insulin resistance by directly impairing the actions of insulin to redistribute blood flow as part of its normal actions driving muscle glucose uptake. Impaired vascular function is a component of the insulin resistance syndrome, and is a feature of type 2 diabetes. On this basis, the vascular endothelium has emerged as a therapeutic target where the intent is to improve systemic metabolic state by improving vascular function. We review the available literature presenting studies in humans, evaluating the effects of metabolically targeted and vascular targeted therapies on insulin action and systemic metabolism. Therapies that improve systemic insulin resistance exert strong concurrent effects to improve vascular function and vascular insulin action. RAS-acting agents and statins have widely recognized beneficial effects on vascular function but have not uniformly produced the hoped-for metabolic benefits. These observations support the notion that systemic metabolic benefits can arise from therapies targeted at the endothelium, but improving vascular insulin action does not result from all treatments that improve endothelium-dependent vasodilation. A better understanding of the mechanisms of insulin’s actions in the vascular wall will advance our understanding of the specificity of these responses, and allow us to better target the vasculature for metabolic benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baron AD, Clark MG. Role of blood flow in the regulation of muscle glucose uptake. Annu Rev Nutr. 1997;17:487–99.

    Article  PubMed  CAS  Google Scholar 

  2. Baron AD, Tarshoby M, Hook G, Lazaridis EN, Cronin J, Johnson A, et al. Interaction between insulin sensitivity and muscle perfusion on glucose uptake in human skeletal muscle: evidence for capillary recruitment. Diabetes. 2000;49(5):768–74.

    Article  PubMed  CAS  Google Scholar 

  3. Tack CJ, Ong MK, Lutterman JA, Smits P. Insulin-induced vasodilatation and endothelial function in obesity/insulin resistance. Effects of troglitazone. Diabetologia. 1998;41(5):569–76.

    Article  PubMed  CAS  Google Scholar 

  4. Barrett EJ, Eggleston EM, Inyard AC, Wang H, Li G, Chai W, et al. The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetologia. 2009;52(5):752–64.

    Article  PubMed  CAS  Google Scholar 

  5. Cleland SJ, Petrie JR, Ueda S, Elliott HL, Connell JM. Insulin as a vascular hormone: implications for the pathophysiology of cardiovascular disease. Clin Exp Pharmacol Physiol. 1998;25(3–4):175–84.

    Article  PubMed  CAS  Google Scholar 

  6. Hsueh WA, Law RE. Insulin signaling in the arterial wall. Am J Cardiol. 1999;84(1A):21J–4J.

    Article  PubMed  CAS  Google Scholar 

  7. Montagnani M, Ravichandran LV, Chen H, Esposito DL, Quon MJ. Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells. Mol Endocrinol. 2002;16(8):1931–42.

    Article  PubMed  CAS  Google Scholar 

  8. Vincent MA, Montagnani M, Quon MJ. Molecular and physiologic actions of insulin related to production of nitric oxide in vascular endothelium. Curr Diabetes Rep. 2003;3(4):279–88.

    Article  Google Scholar 

  9. Zeng G, Nystrom FH, Ravichandran LV, Cong LN, Kirby M, Mostowski H, et al. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation. 2000;101(13):1539–45.

    Article  PubMed  CAS  Google Scholar 

  10. Mather K, Anderson TJ, Verma S. Insulin action in the vasculature: physiology and pathophysiology. J Vasc Res. 2001;38(5):415–22.

    Article  PubMed  CAS  Google Scholar 

  11. Muniyappa R, Montagnani M, Koh KK, Quon MJ. Cardiovascular actions of insulin. Endocr Rev. 2007;28(5):463–91.

    Article  PubMed  CAS  Google Scholar 

  12. Rattigan S, Barrett EJ, Clark MG. Insulin-mediated capillary recruitment in skeletal muscle: is this a mediator of insulin action on glucose metabolism? Curr Diabetes Rep. 2003;3(3):195–200.

    Article  Google Scholar 

  13. Clerk LH, Vincent MA, Lindner JR, Clark MG, Rattigan S, Barrett EJ. The vasodilatory actions of insulin on resistance and terminal arterioles and their impact on muscle glucose uptake. Diabetes Metabol Res Rev. 2004;20(1):3–12.

    Article  CAS  Google Scholar 

  14. Vincent MA, Clerk LH, Rattigan S, Clark MG, Barrett EJ. Active role for the vasculature in the delivery of insulin to skeletal muscle. Clin Exp Pharmacol Physiol. 2005;32(4):302–7.

    Article  PubMed  CAS  Google Scholar 

  15. Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P. Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Investig. 1994;94(6):2511–5.

    Article  PubMed  CAS  Google Scholar 

  16. Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Investig. 1994;94(3):1172–9.

    Article  PubMed  CAS  Google Scholar 

  17. Cleland SJ, Petrie JR, Small M, Elliott HL, Connell JM. Insulin action is associated with endothelial function in hypertension and type 2 diabetes. Hypertension. 2000;35(1 Pt 2):507–11.

    Article  PubMed  CAS  Google Scholar 

  18. Barrett EJ, Wang H, Upchurch CT, Liu Z. Insulin regulates its own delivery to skeletal muscle by feed-forward actions on the vasculature. Am J Physiol Endocrinol Metab. 2011;301(2):E252–63.

    Article  PubMed  CAS  Google Scholar 

  19. Kimura K, Tsuda K, Baba A, Kawabe T, Boh-oka S, Ibata M, et al. Involvement of nitric oxide in endothelium-dependent arterial relaxation by leptin. Biochem Biophys Res Commun. 2000;273(2):745–9.

    Article  PubMed  CAS  Google Scholar 

  20. Benkhoff S, Loot AE, Pierson I, Sturza A, Kohlstedt K, Fleming I, et al. Leptin potentiates endothelium-dependent relaxation by inducing endothelial expression of neuronal NO synthase. Arterioscler Thromb Vasc Biol. 2012;32(7):1605–12.

    Article  PubMed  CAS  Google Scholar 

  21. Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem. 2003;278(45):45021–6.

    Article  PubMed  CAS  Google Scholar 

  22. Ouchi N, Ohishi M, Kihara S, Funahashi T, Nakamura T, Nagaretani H, et al. Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension. 2003;42(3):231–4.

    Article  PubMed  CAS  Google Scholar 

  23. Nystrom T, Gutniak MK, Zhang Q, Zhang F, Holst JJ, Ahren B, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab. 2004;287(6):E1209–15.

    Article  PubMed  CAS  Google Scholar 

  24. Basu A, Charkoudian N, Schrage W, Rizza RA, Basu R, Joyner MJ. Beneficial effects of GLP-1 on endothelial function in humans: dampening by glyburide but not by glimepiride. Am J Physiol Endocrinol Metab. 2007;293(5):E1289–95.

    Article  PubMed  CAS  Google Scholar 

  25. Ceriello A, Esposito K, Testa R, Bonfigli AR, Marra M, Giugliano D. The possible protective role of glucagon-like peptide 1 on endothelium during the meal and evidence for an “endothelial resistance” to glucagon-like peptide 1 in diabetes. Diabetes Care. 2011;34(3):697–702.

    Article  PubMed  CAS  Google Scholar 

  26. Esper RJ, Vilarino JO, Machado RA, Paragano A. Endothelial dysfunction in normal and abnormal glucose metabolism. Adv Cardiol. 2008;45:17–43.

    Article  PubMed  CAS  Google Scholar 

  27. Han KA, Patel Y, Lteif AA, Chisholm R, Mather KJ. Contributions of dysglycaemia, obesity, and insulin resistance to impaired endothelium-dependent vasodilation in humans. Diabetes Metabol Res Rev. 2011;27(4):354–61.

    Article  CAS  Google Scholar 

  28. Williams SB, Goldfine AB, Timimi FK, Ting HH, Roddy MA, Simonson DC, et al. Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation. 1998;97(17):1695–701.

    Article  PubMed  CAS  Google Scholar 

  29. Kawano H, Motoyama T, Hirashima O, Hirai N, Miyao Y, Sakamoto T, et al. Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J Am Coll Cardiol. 1999;34(1):146–54.

    Article  PubMed  CAS  Google Scholar 

  30. Vehkavaara S, Makimattila S, Schlenzka A, Vakkilainen J, Westerbacka J, Yki-Jarvinen H. Insulin therapy improves endothelial function in type 2 diabetes. Arterioscler Thromb Vasc Biol. 2000;20(2):545–50.

    Article  PubMed  CAS  Google Scholar 

  31. Joya-Galeana J, Fernandez M, Cervera A, Reyna S, Ghosh S, Triplitt C, et al. Effects of insulin and oral anti-diabetic agents on glucose metabolism, vascular dysfunction and skeletal muscle inflammation in type 2 diabetic subjects. Diabetes Metabol Res Rev. 2011;27(4):373–82.

    Article  CAS  Google Scholar 

  32. Pistrosch F, Schaper F, Passauer J, Koehler C, Bornstein SR, Hanefeld M. Effects of the alpha glucosidase inhibitor acarbose on endothelial function after a mixed meal in newly diagnosed type 2 diabetes. Horm Metab Res Horm Stoffwechselforschung Horm Metab. 2009;41(2):104–8.

    Article  CAS  Google Scholar 

  33. Emoto T, Sawada T, Hashimoto M, Kageyama H, Terashita D, Mizoguchi T, et al. Effect of 3-month repeated administration of miglitol on vascular endothelial function in patients with diabetes mellitus and coronary artery disease. Am J Cardiol. 2012;109(1):42–6.

    Article  PubMed  CAS  Google Scholar 

  34. Hiki M, Shimada K, Kiyanagi T, Fukao K, Hirose K, Ohsaka H, et al. Single administration of alpha-glucosidase inhibitors on endothelial function and incretin secretion in diabetic patients with coronary artery disease - Juntendo University trial: effects of miglitol on endothelial vascular reactivity in type 2 diabetic patients with coronary heart disease (J-MACH). Circ J Off J Jpn Circ Soc. 2010;74(7):1471–8.

    CAS  Google Scholar 

  35. Chiasson JL. The effect of acarbose on insulin sensitivity in subjects with impaired glucose tolerance. Diabet Med J Br Diabet Assoc. 1996;13(3 Suppl 2):S23–4.

    CAS  Google Scholar 

  36. Matsumoto K, Yano M, Miyake S, Ueki Y, Yamaguchi Y, Akazawa S, et al. Effects of voglibose on glycemic excursions, insulin secretion, and insulin sensitivity in non-insulin-treated NIDDM patients. Diabetes Care. 1998;21(2):256–60.

    Article  PubMed  CAS  Google Scholar 

  37. Bhartia M, Tahrani AA, Barnett AH. SGLT-2 inhibitors in development for type 2 diabetes treatment. Rev Diabet Stud RDS. 2011;8(3):348–54.

    Article  Google Scholar 

  38. Giannarelli R, Aragona M, Coppelli A, Del Prato S. Reducing insulin resistance with metformin: the evidence today. Diabete Metab. 2003;29(4 Pt 2):6S28–35.

    Article  PubMed  CAS  Google Scholar 

  39. Radziuk J, Bailey CJ, Wiernsperger NF, Yudkin JS. Metformin and its liver targets in the treatment of type 2 diabetes. Curr Drug Targets Immune Endocr Metab Disord. 2003;3(2):151–69.

    Article  CAS  Google Scholar 

  40. Mather KJ, Verma S, Anderson TJ. Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol. 2001;37(5):1344–50.

    Article  PubMed  CAS  Google Scholar 

  41. Diamanti-Kandarakis E, Alexandraki K, Protogerou A, Piperi C, Papamichael C, Aessopos A, et al. Metformin administration improves endothelial function in women with polycystic ovary syndrome. Eur J Endocrinol Eur Fed Endocr Soc. 2005;152(5):749–56.

    Article  CAS  Google Scholar 

  42. Vitale C, Mercuro G, Cornoldi A, Fini M, Volterrani M, Rosano GM. Metformin improves endothelial function in patients with metabolic syndrome. J Intern Med. 2005;258(3):250–6.

    Article  PubMed  CAS  Google Scholar 

  43. de Aguiar LG, Bahia LR, Villela N, Laflor C, Sicuro F, Wiernsperger N, et al. Metformin improves endothelial vascular reactivity in first-degree relatives of type 2 diabetic patients with metabolic syndrome and normal glucose tolerance. Diabetes Care. 2006;29(5):1083–9.

    Article  PubMed  CAS  Google Scholar 

  44. Natali A, Baldeweg S, Toschi E, Capaldo B, Barbaro D, Gastaldelli A, et al. Vascular effects of improving metabolic control with metformin or rosiglitazone in type 2 diabetes. Diabetes Care. 2004;27(6):1349–57.

    Article  PubMed  CAS  Google Scholar 

  45. Naka KK, Papathanassiou K, Bechlioulis A, Pappas K, Kazakos N, Kanioglou C, et al. Effects of pioglitazone and metformin on vascular endothelial function in patients with type 2 diabetes treated with sulfonylureas. Diabetes Vasc Dis Res Off J Int Soc Diabetes Vasc Dis. 2012;9(1):52–8.

    Article  Google Scholar 

  46. Martens FM, Visseren FL, Lemay J, de Koning EJ, Rabelink TJ. Metabolic and additional vascular effects of thiazolidinediones. Drugs. 2002;62(10):1463–80.

    Article  PubMed  CAS  Google Scholar 

  47. Pistrosch F, Passauer J, Fischer S, Fuecker K, Hanefeld M, Gross P. In type 2 diabetes, rosiglitazone therapy for insulin resistance ameliorates endothelial dysfunction independent of glucose control. Diabetes Care. 2004;27(2):484–90.

    Article  PubMed  CAS  Google Scholar 

  48. Watanabe Y, Sunayama S, Shimada K, Sawano M, Hoshi S, Iwama Y, et al. Troglitazone improves endothelial dysfunction in patients with insulin resistance. J Atheroscler Thromb. 2000;7(3):159–63.

    PubMed  CAS  Google Scholar 

  49. Caballero AE, Saouaf R, Lim SC, Hamdy O, Abou-Elenin K, O’Connor C, et al. The effects of troglitazone, an insulin-sensitizing agent, on the endothelial function in early and late type 2 diabetes: a placebo-controlled randomized clinical trial. Metab Clin Exp. 2003;52(2):173–80.

    Article  PubMed  CAS  Google Scholar 

  50. Wang TD, Chen WJ, Lin JW, Chen MF, Lee YT. Effects of rosiglitazone on endothelial function, C-reactive protein, and components of the metabolic syndrome in nondiabetic patients with the metabolic syndrome. Am J Cardiol. 2004;93(3):362–5.

    Article  PubMed  CAS  Google Scholar 

  51. Forst T, Lubben G, Hohberg C, Kann P, Sachara C, Gottschall V, et al. Influence of glucose control and improvement of insulin resistance on microvascular blood flow and endothelial function in patients with diabetes mellitus type 2. Microcirculation. 2005;12(7):543–50.

    Article  PubMed  CAS  Google Scholar 

  52. Martens FM, Visseren FL, de Koning EJ, Rabelink TJ. Short-term pioglitazone treatment improves vascular function irrespective of metabolic changes in patients with type 2 diabetes. J Cardiovasc Pharmacol. 2005;46(6):773–8.

    Article  PubMed  CAS  Google Scholar 

  53. Tsuchiya K, Akaza I, Yoshimoto T, Hirata Y. Pioglitazone improves endothelial function with increased adiponectin and high-density lipoprotein cholesterol levels in type 2 diabetes. Endocr J. 2009;56(5):691–8.

    Article  PubMed  CAS  Google Scholar 

  54. Esposito K, Ciotola M, Carleo D, Schisano B, Saccomanno F, Sasso FC, et al. Effect of rosiglitazone on endothelial function and inflammatory markers in patients with the metabolic syndrome. Diabetes Care. 2006;29(5):1071–6.

    Article  PubMed  CAS  Google Scholar 

  55. Goya K, Sumitani S, Otsuki M, Xu X, Yamamoto H, Kurebayashi S, et al. The thiazolidinedione drug troglitazone up-regulates nitric oxide synthase expression in vascular endothelial cells. J Diabetes Complications. 2006;20(5):336–42.

    Article  PubMed  Google Scholar 

  56. Wang CH, Ting MK, Verma S, Kuo LT, Yang NI, Hsieh IC, et al. Pioglitazone increases the numbers and improves the functional capacity of endothelial progenitor cells in patients with diabetes mellitus. Am Hear J. 2006;152(6):e1051–8. 1051.

    Article  CAS  Google Scholar 

  57. Kelly AS, Thelen AM, Kaiser DR, Gonzalez-Campoy JM, Bank AJ. Rosiglitazone improves endothelial function and inflammation but not asymmetric dimethylarginine or oxidative stress in patients with type 2 diabetes mellitus. Vasc Med. 2007;12(4):311–8.

    Article  PubMed  Google Scholar 

  58. Rudofsky Jr G, Reismann P, Grafe IA, Konrade I, Djuric Z, Tafel J, et al. Improved vascular function upon pioglitazone treatment in type 2 diabetes is not associated with changes in mononuclear NF-kappaB binding activity. Horm Metab Res Horm Stoffwechselforschung Horm Metab. 2007;39(9):665–71.

    Article  CAS  Google Scholar 

  59. Patel SR, Mailloux LM, Coppola JT, Mindrescu C, Staniloae CS. Pioglitazone increases adiponectin levels in nondiabetic patients with coronary artery disease. Coron Artery Dis. 2008;19(5):349–53.

    PubMed  Google Scholar 

  60. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Investig. 1996;97(11):2601–10.

    Article  PubMed  CAS  Google Scholar 

  61. de Kreutzenberg SV, Crepaldi C, Marchetto S, Calo L, Tiengo A, Del Prato S, et al. Plasma free fatty acids and endothelium-dependent vasodilation: effect of chain-length and cyclooxygenase inhibition. J Clin Endocrinol Metab. 2000;85(2):793–8.

    Article  PubMed  Google Scholar 

  62. Steinberg HO, Tarshoby M, Monestel R, Hook G, Cronin J, Johnson A, et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Investig. 1997;100(5):1230–9.

    Article  PubMed  CAS  Google Scholar 

  63. de Jongh RT, Serne EH, Ijzerman RG, de Vries G, Stehouwer CD. Free fatty acid levels modulate microvascular function: relevance for obesity-associated insulin resistance, hypertension, and microangiopathy. Diabetes. 2004;53(11):2873–82.

    Article  PubMed  Google Scholar 

  64. Lovisolo PP, Briatico-Vangosa G, Orsini G, Ronchi R, Angelucci R, Valzelli G. Pharmacological profile of a new anti-lipolytic agent: 5-methyl-pyrazine-2-carboxylic acid 4-oxide (acipimox) (1) I - Mechanism of action. Pharmacol Res Commun. 1981;13(2):151–61.

    Article  PubMed  CAS  Google Scholar 

  65. Avogaro A, Miola M, Favaro A, Gottardo L, Pacini G, Manzato E, et al. Gemfibrozil improves insulin sensitivity and flow-mediated vasodilatation in type 2 diabetic patients. Eur J Clin Investig. 2001;31(7):603–9.

    Article  CAS  Google Scholar 

  66. Kamanna VS, Kashyap ML. Mechanism of action of niacin. Am J Cardiol. 2008;101(8A):20B–6B.

    Article  PubMed  CAS  Google Scholar 

  67. Lukasova M, Hanson J, Tunaru S, Offermanns S. Nicotinic acid (niacin): new lipid-independent mechanisms of action and therapeutic potentials. Trends Pharmacol Sci. 2011;32(12):700–7.

    Article  PubMed  CAS  Google Scholar 

  68. Andrews TC, Whitney EJ, Green G, Kalenian R, Personius BE. Effect of gemfibrozil +/- niacin +/- cholestyramine on endothelial function in patients with serum low-density lipoprotein cholesterol levels <160 mg/dl and high-density lipoprotein cholesterol levels <40 mg/dl. Am J Cardiol. 1997;80(7):831–5.

    Article  PubMed  CAS  Google Scholar 

  69. Warnholtz A, Wild P, Ostad MA, Elsner V, Stieber F, Schinzel R, et al. Effects of oral niacin on endothelial dysfunction in patients with coronary artery disease: results of the randomized, double-blind, placebo-controlled INEF study. Atherosclerosis. 2009;204(1):216–21.

    Article  PubMed  CAS  Google Scholar 

  70. Johnston P, Hollenbeck C, Sheu W, Chen YD, Reaven GM. Acute changes in plasma non-esterified fatty acid concentration do not change hepatic glucose production in people with type 2 diabetes. Diabet Med J Br Diabet Assoc. 1990;7(10):871–5.

    Article  CAS  Google Scholar 

  71. Alvarsson M, Grill V. Impact of nicotinic acid treatment on insulin secretion and insulin sensitivity in low and high insulin responders. Scand J Clin Lab Investig. 1996;56(6):563–70.

    Article  CAS  Google Scholar 

  72. Kelly JJ, Lawson JA, Campbell LV, Storlien LH, Jenkins AB, Whitworth JA, et al. Effects of nicotinic acid on insulin sensitivity and blood pressure in healthy subjects. J Hum Hypertens. 2000;14(9):567–72.

    Article  PubMed  CAS  Google Scholar 

  73. Shearer GC, Savinova OV, Harris WS. Fish oil—how does it reduce plasma triglycerides? Biochim Biophys Acta. 2012;1821(5):843–51.

    Article  PubMed  CAS  Google Scholar 

  74. Rivellese AA, Maffettone A, Iovine C, Di Marino L, Annuzzi G, Mancini M, et al. Long-term effects of fish oil on insulin resistance and plasma lipoproteins in NIDDM patients with hypertriglyceridemia. Diabetes Care. 1996;19(11):1207–13.

    Article  PubMed  CAS  Google Scholar 

  75. Muurling M, Mensink RP, Pijl H, Romijn JA, Havekes LM, Voshol PJ. A fish oil diet does not reverse insulin resistance despite decreased adipose tissue TNF-alpha protein concentration in ApoE-3*Leiden mice. J Nutr. 2003;133(11):3350–5.

    PubMed  CAS  Google Scholar 

  76. McVeigh GE, Brennan GM, Johnston GD, McDermott BJ, McGrath LT, Henry WR, et al. Dietary fish oil augments nitric oxide production or release in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1993;36(1):33–8.

    Article  PubMed  CAS  Google Scholar 

  77. Mori TA, Watts GF, Burke V, Hilme E, Puddey IB, Beilin LJ. Differential effects of eicosapentaenoic acid and docosahexaenoic acid on vascular reactivity of the forearm microcirculation in hyperlipidemic, overweight men. Circulation. 2000;102(11):1264–9.

    Article  PubMed  CAS  Google Scholar 

  78. Rizza S, Tesauro M, Cardillo C, Galli A, Iantorno M, Gigli F, et al. Fish oil supplementation improves endothelial function in normoglycemic offspring of patients with type 2 diabetes. Atherosclerosis. 2009;206(2):569–74.

    Article  PubMed  CAS  Google Scholar 

  79. Eckel RH, Wassef M, Chait A, Sobel B, Barrett E, King G, et al. Prevention Conference VI: Diabetes and Cardiovascular Disease: Writing Group II: pathogenesis of atherosclerosis in diabetes. Circulation. 2002;105(18):e138–43.

    Article  PubMed  Google Scholar 

  80. Natali A, Toschi E, Baldeweg S, Ciociaro D, Favilla S, Sacca L, et al. Clustering of insulin resistance with vascular dysfunction and low-grade inflammation in type 2 diabetes. Diabetes. 2006;55(4):1133–40.

    Article  PubMed  CAS  Google Scholar 

  81. Nystrom T, Nygren A, Sjoholm A. Increased levels of tumour necrosis factor-alpha (TNF-alpha) in patients with Type II diabetes mellitus after myocardial infarction are related to endothelial dysfunction. Clin Sci. 2006;110(6):673–81.

    Article  PubMed  CAS  Google Scholar 

  82. Gokulakrishnan K, Deepa R, Mohan V. Association of high sensitivity C-reactive protein (hsCRP) and tumour necrosis factor-alpha (TNF-alpha) with carotid intimal medial thickness in subjects with different grades of glucose intolerance–the Chennai Urban Rural Epidemiology Study (CURES-31). Clin Biochem. 2008;41(7–8):480–5.

    Article  PubMed  CAS  Google Scholar 

  83. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91.

    Article  PubMed  CAS  Google Scholar 

  84. Hotamisligil GS, Spiegelman BM. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes. 1994;43(11):1271–8.

    Article  PubMed  CAS  Google Scholar 

  85. Patel JN, Jager A, Schalkwijk C, Corder R, Douthwaite JA, Yudkin JS, et al. Effects of tumour necrosis factor-alpha in the human forearm: blood flow and endothelin-1 release. Clin Sci. 2002;103(4):409–15.

    PubMed  CAS  Google Scholar 

  86. Rask-Madsen C, Dominguez H, Ihlemann N, Hermann T, Kober L, Torp-Pedersen C. Tumor necrosis factor-alpha inhibits insulin’s stimulating effect on glucose uptake and endothelium-dependent vasodilation in humans. Circulation. 2003;108(15):1815–21.

    Article  PubMed  CAS  Google Scholar 

  87. Kim F, Tysseling KA, Rice J, Pham M, Haji L, Gallis BM, et al. Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKbeta. Arterioscler Thromb Vasc Biol. 2005;25(5):989–94.

    Article  PubMed  CAS  Google Scholar 

  88. Harvey KA, Walker CL, Pavlina TM, Xu Z, Zaloga GP, Siddiqui RA. Long-chain saturated fatty acids induce pro-inflammatory responses and impact endothelial cell growth. Clin Nutr. 2010;29(4):492–500.

    Article  PubMed  CAS  Google Scholar 

  89. Nitenberg A, Cosson E, Pham I. Postprandial endothelial dysfunction: role of glucose, lipids and insulin. Diabete Metab. 2006;32(Spec No2):2S28–33.

    Article  PubMed  CAS  Google Scholar 

  90. Lalla E, Lamster IB, Stern DM, Schmidt AM. Receptor for advanced glycation end products, inflammation, and accelerated periodontal disease in diabetes: mechanisms and insights into therapeutic modalities. Ann Periodontol Am Acad Periodontol. 2001;6(1):113–8.

    Article  CAS  Google Scholar 

  91. Dominguez H, Storgaard H, Rask-Madsen C, Steffen Hermann T, Ihlemann N, Baunbjerg Nielsen D, et al. Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes. J Vasc Res. 2005;42(6):517–25.

    Article  PubMed  CAS  Google Scholar 

  92. Gonzalez-Gay MA, De Matias JM, Gonzalez-Juanatey C, Garcia-Porrua C, Sanchez-Andrade A, Martin J, et al. Anti-tumor necrosis factor-alpha blockade improves insulin resistance in patients with rheumatoid arthritis. Clin Exp Rheumatol. 2006;24(1):83–6.

    PubMed  CAS  Google Scholar 

  93. Koutroubakis IE, Oustamanolakis P, Malliaraki N, Karmiris K, Chalkiadakis I, Ganotakis E, et al. Effects of tumor necrosis factor alpha inhibition with infliximab on lipid levels and insulin resistance in patients with inflammatory bowel disease. Eur J Gastroenterol Hepatol. 2009;21(3):283–8.

    Article  PubMed  CAS  Google Scholar 

  94. Marra M, Campanati A, Testa R, Sirolla C, Bonfigli AR, Franceschi C, et al. Effect of etanercept on insulin sensitivity in nine patients with psoriasis. Int J Immunopathol Pharmacol. 2007;20(4):731–6.

    PubMed  CAS  Google Scholar 

  95. Stanley TL, Zanni MV, Johnsen S, Rasheed S, Makimura H, Lee H, et al. TNF-alpha antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J Clin Endocrinol Metab. 2011;96(1):E146–50.

    Article  PubMed  CAS  Google Scholar 

  96. Yazdani-Biuki B, Stelzl H, Brezinschek HP, Hermann J, Mueller T, Krippl P, et al. Improvement of insulin sensitivity in insulin resistant subjects during prolonged treatment with the anti-TNF-alpha antibody infliximab. Eur J Clin Investig. 2004;34(9):641–2.

    Article  CAS  Google Scholar 

  97. Di Rocco P, Manco M, Rosa G, Greco AV, Mingrone G. Lowered tumor necrosis factor receptors, but not increased insulin sensitivity, with infliximab. Obes Res. 2004;12(4):734–9.

    Article  PubMed  Google Scholar 

  98. Ferraz-Amaro I, Arce-Franco M, Muniz J, Lopez-Fernandez J, Hernandez-Hernandez V, Franco A, et al. Systemic blockade of TNF-alpha does not improve insulin resistance in humans. Horm Metab Res Horm Stoffwechselforschung Horm Metab. 2011;43(11):801–8.

    Article  CAS  Google Scholar 

  99. Martinez-Abundis E, Reynoso-von Drateln C, Hernandez-Salazar E, Gonzalez-Ortiz M. Effect of etanercept on insulin secretion and insulin sensitivity in a randomized trial with psoriatic patients at risk for developing type 2 diabetes mellitus. Arch Dermatol Res. 2007;299(9):461–5.

    Article  PubMed  CAS  Google Scholar 

  100. Hurlimann D, Forster A, Noll G, Enseleit F, Chenevard R, Distler O, et al. Anti-tumor necrosis factor-alpha treatment improves endothelial function in patients with rheumatoid arthritis. Circulation. 2002;106(17):2184–7.

    Article  PubMed  Google Scholar 

  101. Gonzalez-Juanatey C, Testa A, Garcia-Castelo A, Garcia-Porrua C, Llorca J, Gonzalez-Gay MA. Active but transient improvement of endothelial function in rheumatoid arthritis patients undergoing long-term treatment with anti-tumor necrosis factor alpha antibody. Arthritis Rheum. 2004;51(3):447–50.

    Article  PubMed  CAS  Google Scholar 

  102. Cardillo C, Schinzari F, Mores N, Mettimano M, Melina D, Zoli A, et al. Intravascular tumor necrosis factor alpha blockade reverses endothelial dysfunction in rheumatoid arthritis. Clin Pharmacol Ther. 2006;80(3):275–81.

    Article  PubMed  CAS  Google Scholar 

  103. Bosello S, Santoliquido A, Zoli A, Di Campli C, Flore R, Tondi P, et al. TNF-alpha blockade induces a reversible but transient effect on endothelial dysfunction in patients with long-standing severe rheumatoid arthritis. Clin Rheumatol. 2008;27(7):833–9.

    Article  PubMed  Google Scholar 

  104. Schinzari F, Armuzzi A, De Pascalis B, Mores N, Tesauro M, Melina D, et al. Tumor necrosis factor-alpha antagonism improves endothelial dysfunction in patients with Crohn’s disease. Clin Pharmacol Ther. 2008;83(1):70–6.

    Article  PubMed  CAS  Google Scholar 

  105. Wascher TC, Lindeman JH, Sourij H, Kooistra T, Pacini G, Roden M. Chronic TNF-alpha neutralization does not improve insulin resistance or endothelial function in “healthy” men with metabolic syndrome. Mol Med. 2011;17(3–4):189–93.

    PubMed  CAS  Google Scholar 

  106. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Investig. 2006;116(7):1793–801.

    Article  PubMed  CAS  Google Scholar 

  107. Fleischman A, Shoelson SE, Bernier R, Goldfine AB. Salsalate improves glycemia and inflammatory parameters in obese young adults. Diabetes Care. 2008;31(2):289–94.

    Article  PubMed  CAS  Google Scholar 

  108. Goldfine AB, Silver R, Aldhahi W, Cai D, Tatro E, Lee J, et al. Use of salsalate to target inflammation in the treatment of insulin resistance and type 2 diabetes. Clin Transl Sci. 2008;1(1):36–43.

    Article  PubMed  CAS  Google Scholar 

  109. Goldfine AB, Fonseca V, Jablonski KA, Pyle L, Staten MA, Shoelson SE. The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial. Ann Intern Med. 2010;152(6):346–57.

    PubMed  Google Scholar 

  110. Gupta SK, Johnson RM, Saha C, Mather KJ, Greenwald ML, Waltz JS, et al. Improvement in HIV-related endothelial dysfunction using the anti-inflammatory agent salsalate: a pilot study. AIDS. 2008;22(5):653–5.

    Article  PubMed  CAS  Google Scholar 

  111. Pierce GL, Lesniewski LA, Lawson BR, Beske SD, Seals DR. Nuclear factor-{kappa}B activation contributes to vascular endothelial dysfunction via oxidative stress in overweight/obese middle-aged and older humans. Circulation. 2009;119(9):1284–92.

    Article  PubMed  CAS  Google Scholar 

  112. Schmidt AM, Yan SD, Yan SF, Stern DM. The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophys Acta. 2000;1498(2–3):99–111.

    Article  PubMed  CAS  Google Scholar 

  113. Rashid G, Benchetrit S, Fishman D, Bernheim J. Effect of advanced glycation end-products on gene expression and synthesis of TNF-alpha and endothelial nitric oxide synthase by endothelial cells. Kidney Int. 2004;66(3):1099–106.

    Article  PubMed  CAS  Google Scholar 

  114. Soro-Paavonen A, Zhang WZ, Venardos K, Coughlan MT, Harris E, Tong DC, et al. Advanced glycation end-products induce vascular dysfunction via resistance to nitric oxide and suppression of endothelial nitric oxide synthase. J Hypertens. 2010;28(4):780–8.

    Article  PubMed  CAS  Google Scholar 

  115. van Poppel PC, Netea MG, Smits P, Tack CJ. Vildagliptin improves endothelium-dependent vasodilatation in type 2 diabetes. Diabetes Care. 2011;34(9):2072–7.

    Article  PubMed  CAS  Google Scholar 

  116. Matsui T, Yamagishi S, Ueda S, Nakamura K, Imaizumi T, Takeuchi M, et al. Telmisartan, an angiotensin II type 1 receptor blocker, inhibits advanced glycation end-product (AGE)-induced monocyte chemoattractant protein-1 expression in mesangial cells through downregulation of receptor for AGEs via peroxisome proliferator-activated receptor-gamma activation. J Int Med Res. 2007;35(4):482–9.

    PubMed  CAS  Google Scholar 

  117. Freidja ML, Tarhouni K, Toutain B, Fassot C, Loufrani L, Henrion D. The AGE-breaker ALT-711 restores high blood flow-dependent remodeling in mesenteric resistance arteries in a rat model of type 2 diabetes. Diabetes. 2012;61(6):1562–72.

    Article  PubMed  CAS  Google Scholar 

  118. Kranstuber AL, Del Rio C, Biesiadecki BJ, Hamlin RL, Ottobre J, Gyorke S, et al. Advanced glycation end product cross-link breaker attenuates diabetes-induced cardiac dysfunction by improving sarcoplasmic reticulum calcium handling. Front Physiol. 2012;3:292.

    Article  PubMed  Google Scholar 

  119. Hartog JW, Willemsen S, van Veldhuisen DJ, Posma JL, van Wijk LM, Hummel YM, et al. Effects of alagebrium, an advanced glycation endproduct breaker, on exercise tolerance and cardiac function in patients with chronic heart failure. Eur J Hear Fail. 2011;13(8):899–908.

    Article  CAS  Google Scholar 

  120. Zieman SJ, Melenovsky V, Clattenburg L, Corretti MC, Capriotti A, Gerstenblith G, et al. Advanced glycation endproduct crosslink breaker (alagebrium) improves endothelial function in patients with isolated systolic hypertension. J Hypertens. 2007;25(3):577–83.

    Article  PubMed  CAS  Google Scholar 

  121. Stirban A, Negrean M, Stratmann B, Gawlowski T, Horstmann T, Gotting C, et al. Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes. Diabetes Care. 2006;29(9):2064–71.

    Article  PubMed  CAS  Google Scholar 

  122. Higashi Y, Oshima T, Sasaki N, Ishioka N, Nakano Y, Ozono R, et al. Relationship between insulin resistance and endothelium-dependent vascular relaxation in patients with essential hypertension. Hypertension. 1997;29(1 Pt 2):280–5.

    Article  PubMed  CAS  Google Scholar 

  123. Tooke J. The association between insulin resistance and endotheliopathy. Diabetes Obes Metab. 1999;1 Suppl 1:S17–22.

    Article  PubMed  Google Scholar 

  124. Taddei S, Virdis A, Ghiadoni L, Sudano I, Salvetti A. Antihypertensive drugs and reversing of endothelial dysfunction in hypertension. Curr Hypertens Rep. 2000;2(1):64–70.

    Article  PubMed  CAS  Google Scholar 

  125. Tezcan H, Yavuz D, Toprak A, Akpinar I, Koc M, Deyneli O, et al. Effect of angiotensin-converting enzyme inhibition on endothelial function and insulin sensitivity in hypertensive patients. J Renin-Angiotensin-Aldosterone Syst JRAAS. 2003;4(2):119–23.

    Article  CAS  Google Scholar 

  126. Yavuz D, Koc M, Toprak A, Akpinar I, Velioglu A, Deyneli O, et al. Effects of ACE inhibition and AT1-receptor antagonism on endothelial function and insulin sensitivity in essential hypertensive patients. J Renin-Angiotensin-Aldosterone Syst JRAAS. 2003;4(3):197–203.

    Article  CAS  Google Scholar 

  127. Tomiyama H, Yambe M, Yamada J, Motobe K, Koji Y, Yoshida M, et al. Discrepancy between improvement of insulin sensitivity and that of arterial endothelial function in patients receiving antihypertensive medication. J Hypertens. 2007;25(4):883–9.

    Article  PubMed  CAS  Google Scholar 

  128. Chou CL, Pang CY, Lee TJ, Fang TC. Direct renin inhibitor prevents and ameliorates insulin resistance, aortic endothelial dysfunction and vascular remodeling in fructose-fed hypertensive rats. Hypertens Res Off J Jpn Soc Hypertens. 2012. doi:10.1038/hr.2012.124.

  129. Lteif AA, Chisholm RL, Gilbert K, Considine RV, Mather KJ. Effects of losartan on whole body, skeletal muscle and vascular insulin responses in obesity/insulin resistance without hypertension. Diabetes Obes Metab. 2012;14(3):254–61.

    Article  PubMed  CAS  Google Scholar 

  130. Hermann TS, Li W, Dominguez H, Ihlemann N, Rask-Madsen C, Major-Pedersen A, et al. Quinapril treatment increases insulin-stimulated endothelial function and adiponectin gene expression in patients with type 2 diabetes. J Clin Endocrinol Metab. 2006;91(3):1001–8.

    Article  PubMed  CAS  Google Scholar 

  131. Kearney PM, Blackwell L, Collins R, Keech A, Simes J, Peto R, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371(9607):117–25.

    Article  PubMed  CAS  Google Scholar 

  132. Economides PA, Caselli A, Tiani E, Khaodhiar L, Horton ES, Veves A. The effects of atorvastatin on endothelial function in diabetic patients and subjects at risk for type 2 diabetes. J Clin Endocrinol Metab. 2004;89(2):740–7.

    Article  PubMed  CAS  Google Scholar 

  133. Beishuizen ED, Tamsma JT, Jukema JW, van de Ree MA, van der Vijver JC, Meinders AE, et al. The effect of statin therapy on endothelial function in type 2 diabetes without manifest cardiovascular disease. Diabetes Care. 2005;28(7):1668–74.

    Article  PubMed  CAS  Google Scholar 

  134. Koh KK, Quon MJ, Han SH, Lee Y, Ahn JY, Kim SJ, et al. Simvastatin improves flow-mediated dilation but reduces adiponectin levels and insulin sensitivity in hypercholesterolemic patients. Diabetes Care. 2008;31(4):776–82.

    Article  PubMed  CAS  Google Scholar 

  135. Kater AL, Batista MC, Ferreira SR. Improved endothelial function with simvastatin but unchanged insulin sensitivity with simvastatin or ezetimibe. Metab Clin Exp. 2010;59(6):921–6.

    Article  PubMed  CAS  Google Scholar 

  136. Paradisi G, Bracaglia M, Basile F, Di’Ipolito S, Di Nicuolo F, Ianniello F, et al. Effect of pravastatin on endothelial function and endothelial progenitor cells in healthy postmenopausal women. Clin Exp Obstet Gynecol. 2012;39(2):153–9.

    PubMed  CAS  Google Scholar 

  137. Culver AL, Ockene IS, Balasubramanian R, Olendzki BC, Sepavich DM, Wactawski-Wende J, et al. Statin use and risk of diabetes mellitus in postmenopausal women in the Women’s Health Initiative. Arch Intern Med. 2012;172(2):144–52.

    Article  PubMed  Google Scholar 

  138. Ridker PM, Pradhan A, MacFadyen JG, Libby P, Glynn RJ. Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial. Lancet. 2012;380(9841):565–71.

    Article  PubMed  CAS  Google Scholar 

  139. Waters DD, Ho JE, Boekholdt SM, Demicco DA, Kastelein JJ, Messig M, et al. Cardiovascular event reduction versus new-onset diabetes during atorvastatin therapy: effect of baseline risk factors for diabetes. J Am Coll Cardiol. 2012;61(2):148–52.

    Google Scholar 

  140. Zaharan NL, Williams D, Bennett K. Statins and risk of treated incident diabetes in a primary care population. Br J Clin Pharmacol. 2012. doi:10.1111/j.1365-2125.2012.04403.x.

  141. Vanhoutte PM. Endothelium and control of vascular function. State of the Art lecture. Hypertension. 1989;13(6 Pt 2):658–67.

    Article  PubMed  CAS  Google Scholar 

  142. Luscher TF, Yang Z, Tschudi M, von Segesser L, Stulz P, Boulanger C, et al. Interaction between endothelin-1 and endothelium-derived relaxing factor in human arteries and veins. Circ Res. 1990;66(4):1088–94.

    Article  PubMed  CAS  Google Scholar 

  143. Park JY, Takahara N, Gabriele A, Chou E, Naruse K, Suzuma K, et al. Induction of endothelin-1 expression by glucose: an effect of protein kinase C activation. Diabetes. 2000;49(7):1239–48.

    Article  PubMed  CAS  Google Scholar 

  144. Piatti PM, Monti LD, Conti M, Baruffaldi L, Galli L, Phan CV, et al. Hypertriglyceridemia and hyperinsulinemia are potent inducers of endothelin-1 release in humans. Diabetes. 1996;45(3):316–21.

    Article  PubMed  CAS  Google Scholar 

  145. Seljeflot I, Moan A, Aspelin T, Tonnessen T, Kjeldsen SE, Arnesen H. Circulating levels of endothelin-1 during acute hyperinsulinemia in patients with essential hypertension treated with type 1 angiotensin receptor antagonist or placebo. Metab Clin Exp. 1998;47(3):292–6.

    Article  PubMed  CAS  Google Scholar 

  146. Guo JP, Siegfried MR, Lefer AM. Endothelial preserving actions of a nitric oxide donor in carotid arterial intimal injury. Methods Find Exp Clin Pharmacol. 1994;16(5):347–54.

    PubMed  CAS  Google Scholar 

  147. Liu GL, Christopher TA, Lopez BL, Gao F, Guo Y, Gao E, et al. SP/W-5186, A cysteine-containing nitric oxide donor, attenuates postischemic myocardial injury. J Pharmacol Exp Ther. 1998;287(2):527–37.

    PubMed  CAS  Google Scholar 

  148. Rossoni G, Manfredi B, Del Soldato P, Berti F. NCX 4016, a nitric oxide-releasing aspirin, modulates adrenergic vasoconstriction in the perfused rat tail artery. Br J Pharmacol. 2002;137(2):229–36.

    Article  PubMed  CAS  Google Scholar 

  149. Durante W, Johnson FK, Johnson RA. Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clin Exp Pharmacol Physiol. 2007;34(9):906–11.

    Article  PubMed  CAS  Google Scholar 

  150. Shemyakin A, Kovamees O, Rafnsson A, Bohm F, Svenarud P, Settergren M, et al. Arginase inhibition improves endothelial function in patients with coronary artery disease and type 2 diabetes. Circulation. 2012;126(25):2943–50.

    Google Scholar 

  151. Heitzer T, Krohn K, Albers S, Meinertz T. Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with Type II diabetes mellitus. Diabetologia. 2000;43(11):1435–8.

    Article  PubMed  CAS  Google Scholar 

  152. Meininger CJ, Cai S, Parker JL, Channon KM, Kelly KA, Becker EJ, et al. GTP cyclohydrolase I gene transfer reverses tetrahydrobiopterin deficiency and increases nitric oxide synthesis in endothelial cells and isolated vessels from diabetic rats. FASEB J Off Publ Fed Am Soc Exp Biol. 2004;18(15):1900–2.

    CAS  Google Scholar 

  153. Nystrom T, Nygren A, Sjoholm A. Tetrahydrobiopterin increases insulin sensitivity in patients with type 2 diabetes and coronary heart disease. Am J Physiol Endocrinol Metab. 2004;287(5):E919–25.

    Article  PubMed  CAS  Google Scholar 

  154. Fard A, Tuck CH, Donis JA, Sciacca R, Di Tullio MR, Wu HD, et al. Acute elevations of plasma asymmetric dimethylarginine and impaired endothelial function in response to a high-fat meal in patients with type 2 diabetes. Arterioscler Thromb Vasc Biol. 2000;20(9):2039–44.

    Article  PubMed  CAS  Google Scholar 

  155. Toutouzas K, Riga M, Stefanadi E, Stefanadis C. Asymmetric dimethylarginine (ADMA) and other endogenous nitric oxide synthase (NOS) inhibitors as an important cause of vascular insulin resistance. Horm Metab Res Horm Stoffwechselforschung Horm Metab. 2008;40(9):655–9.

    Article  CAS  Google Scholar 

  156. Sciacqua A, Grillo N, Quero M, Sesti G, Perticone F. Asymmetric dimethylarginine plasma levels and endothelial function in newly diagnosed type 2 diabetic patients. Int J Mol Sci. 2012;13(11):13804–15.

    Article  PubMed  CAS  Google Scholar 

  157. Tang WJ, Hu CP, Chen MF, Deng PY, Li YJ. Epigallocatechin gallate preserves endothelial function by reducing the endogenous nitric oxide synthase inhibitor level. Can J Physiol Pharmacol. 2006;84(2):163–71.

    Article  PubMed  CAS  Google Scholar 

  158. Yang TL, Chen MF, Xia X, Luo BL, Li YJ. Effect of fenofibrate on the level of asymmetric dimethylarginine in individuals with hypertriglyceridemia. Eur J Clin Pharmacol. 2006;62(3):179–84.

    Article  PubMed  CAS  Google Scholar 

  159. Tomiyama H, Yamada J, Koji Y, Shiina K, Yoshida M, Yamashina A. Effect of telmisartan on forearm postischemic hyperemia and serum asymmetric dimethylarginine levels. Am J Hypertens. 2007;20(12):1305–11.

    Article  PubMed  CAS  Google Scholar 

  160. Young JM, Strey CH, George PM, Florkowski CM, Sies CW, Frampton CM, et al. Effect of atorvastatin on plasma levels of asymmetric dimethylarginine in patients with non-ischaemic heart failure. Eur J Hear Fail. 2008;10(5):463–6.

    Article  CAS  Google Scholar 

  161. Aversa A, Greco E, Bruzziches R, Pili M, Rosano G, Spera G. Relationship between chronic tadalafil administration and improvement of endothelial function in men with erectile dysfunction: a pilot study. Int J Impot Res. 2007;19(2):200–7.

    Article  PubMed  CAS  Google Scholar 

  162. Aversa A, Vitale C, Volterrani M, Fabbri A, Spera G, Fini M, et al. Chronic administration of Sildenafil improves markers of endothelial function in men with Type 2 diabetes. Diabet Med J Br Diabet Assoc. 2008;25(1):37–44.

    Article  CAS  Google Scholar 

  163. Yamashiro K, Milsom AB, Duchene J, Panayiotou C, Urabe T, Hattori N, et al. Alterations in nitric oxide and endothelin-1 bioactivity underlie cerebrovascular dysfunction in ApoE-deficient mice. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2010;30(8):1494–503.

    Article  CAS  Google Scholar 

  164. Mather KJ, Mirzamohammadi B, Lteif A, Steinberg HO, Baron AD. Endothelin contributes to basal vascular tone and endothelial dysfunction in human obesity and type 2 diabetes. Diabetes. 2002;51(12):3517–23.

    Article  PubMed  CAS  Google Scholar 

  165. Shemyakin A, Bohm F, Wagner H, Efendic S, Bavenholm P, Pernow J. Enhanced endothelium-dependent vasodilatation by dual endothelin receptor blockade in individuals with insulin resistance. J Cardiovasc Pharmacol. 2006;47(3):385–90.

    PubMed  CAS  Google Scholar 

  166. Rafnsson A, Bohm F, Settergren M, Gonon A, Brismar K, Pernow J. The endothelin receptor antagonist bosentan improves peripheral endothelial function in patients with type 2 diabetes mellitus and microalbuminuria: a randomised trial. Diabetologia. 2012;55(3):600–7.

    Article  PubMed  CAS  Google Scholar 

  167. Miller AW, Tulbert C, Puskar M, Busija DW. Enhanced endothelin activity prevents vasodilation to insulin in insulin resistance. Hypertension. 2002;40(1):78–82.

    Article  PubMed  CAS  Google Scholar 

  168. Ahlborg G, Shemyakin A, Bohm F, Gonon A, Pernow J. Dual endothelin receptor blockade acutely improves insulin sensitivity in obese patients with insulin resistance and coronary artery disease. Diabetes Care. 2007;30(3):591–6.

    Article  PubMed  CAS  Google Scholar 

  169. Lteif A, Vaishnava P, Baron AD, Mather KJ. Endothelin limits insulin action in obese/insulin-resistant humans. Diabetes. 2007;56(3):728–34.

    Article  PubMed  CAS  Google Scholar 

  170. Lorenz M, Wessler S, Follmann E, Michaelis W, Dusterhoft T, Baumann G, et al. A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation. J Biol Chem. 2004;279(7):6190–5.

    Article  PubMed  CAS  Google Scholar 

  171. Kim JA, Formoso G, Li Y, Potenza MA, Marasciulo FL, Montagnani M, et al. Epigallocatechin gallate, a green tea polyphenol, mediates NO-dependent vasodilation using signaling pathways in vascular endothelium requiring reactive oxygen species and Fyn. J Biol Chem. 2007;282(18):13736–45.

    Article  PubMed  CAS  Google Scholar 

  172. Potenza MA, Marasciulo FL, Tarquinio M, Tiravanti E, Colantuono G, Federici A, et al. EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. Am J Physiol Endocrinol Metab. 2007;292(5):E1378–87.

    Article  PubMed  CAS  Google Scholar 

  173. Kim W, Jeong MH, Cho SH, Yun JH, Chae HJ, Ahn YK, et al. Effect of green tea consumption on endothelial function and circulating endothelial progenitor cells in chronic smokers. Circ J Off J Jpn Circ Soc. 2006;70(8):1052–7.

    CAS  Google Scholar 

  174. Alexopoulos N, Vlachopoulos C, Aznaouridis K, Baou K, Vasiliadou C, Pietri P, et al. The acute effect of green tea consumption on endothelial function in healthy individuals. Eur J Cardiovasc Prev Rehabil Off J Eur Soc Cardiol Work Group Epidemiol Prev Card Rehabil Exerc Physiol. 2008;15(3):300–5.

    Article  Google Scholar 

  175. Miller RJ, Jackson KG, Dadd T, Mayes AE, Brown AL, Minihane AM. The impact of the catechol-O-methyltransferase genotype on the acute responsiveness of vascular reactivity to a green tea extract. Br J Nutr. 2011;105(8):1138–44.

    Article  PubMed  Google Scholar 

  176. Formoso G, Chen H, Kim JA, Montagnani M, Consoli A, Quon MJ. Dehydroepiandrosterone mimics acute actions of insulin to stimulate production of both nitric oxide and endothelin 1 via distinct phosphatidylinositol 3-kinase- and mitogen-activated protein kinase-dependent pathways in vascular endothelium. Mol Endocrinol. 2006;20(5):1153–63.

    Article  PubMed  CAS  Google Scholar 

  177. Kawano H, Yasue H, Kitagawa A, Hirai N, Yoshida T, Soejima H, et al. Dehydroepiandrosterone supplementation improves endothelial function and insulin sensitivity in men. J Clin Endocrinol Metab. 2003;88(7):3190–5.

    Article  PubMed  CAS  Google Scholar 

  178. Mieczkowska J, Mosiewicz J, Sak J, Grzybowski A, Terlecki P, Barud W, et al. Effects of cigarette smoking, metabolic syndrome and dehydroepiandrosterone deficiency on intima-media thickness and endothelial function in hypertensive postmenopausal women. Med Sci Monit Int Med J Exp Clin Res. 2012;18(4):CR225–34.

    CAS  Google Scholar 

  179. Dagre A, Lekakis J, Mihas C, Protogerou A, Thalassinou L, Tryfonopoulos D, et al. Association of dehydroepiandrosterone-sulfate with endothelial function in young women with polycystic ovary syndrome. Eur J Endocrinol Eur Fed Endocr Soc. 2006;154(6):883–90.

    Article  CAS  Google Scholar 

  180. Novakovic A, Gojkovic-Bukarica L, Peric M, Nezic D, Djukanovic B, Markovic-Lipkovski J, et al. The mechanism of endothelium-independent relaxation induced by the wine polyphenol resveratrol in human internal mammary artery. J Pharmacol Sci. 2006;101(1):85–90.

    Article  PubMed  CAS  Google Scholar 

  181. Wallerath T, Deckert G, Ternes T, Anderson H, Li H, Witte K, et al. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation. 2002;106(13):1652–8.

    Article  PubMed  CAS  Google Scholar 

  182. Lopez-Sepulveda R, Gomez-Guzman M, Zarzuelo MJ, Romero M, Sanchez M, Quintela AM, et al. Red wine polyphenols prevent endothelial dysfunction induced by endothelin-1 in rat aorta: role of NADPH oxidase. Clin Sci. 2011;120(8):321–33.

    Article  PubMed  CAS  Google Scholar 

  183. Nicholson SK, Tucker GA, Brameld JM. Physiological concentrations of dietary polyphenols regulate vascular endothelial cell expression of genes important in cardiovascular health. Br J Nutr. 2010;103(10):1398–403.

    Article  PubMed  CAS  Google Scholar 

  184. Fujitaka K, Otani H, Jo F, Jo H, Nomura E, Iwasaki M, et al. Modified resveratrol Longevinex improves endothelial function in adults with metabolic syndrome receiving standard treatment. Nutr Res. 2011;31(11):842–7.

    Article  PubMed  CAS  Google Scholar 

  185. Wong RH, Howe PR, Buckley JD, Coates AM, Kunz I, Berry NM. Acute resveratrol supplementation improves flow-mediated dilatation in overweight/obese individuals with mildly elevated blood pressure. Nutr Metab Cardiovasc Dis NMCD. 2011;21(11):851–6.

    Article  CAS  Google Scholar 

  186. Shantikumar S, Caporali A, Emanueli C. Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc Res. 2012;93(4):583–93.

    Article  PubMed  CAS  Google Scholar 

  187. Zhang MX, Ou H, Shen YH, Wang J, Coselli J, Wang XL. Regulation of endothelial nitric oxide synthase by small RNA. Proc Natl Acad Sci U S A. 2005;102(47):16967–72.

    Article  PubMed  CAS  Google Scholar 

  188. Dickhout JG, Hossain GS, Pozza LM, Zhou J, Lhotak S, Austin RC. Peroxynitrite causes endoplasmic reticulum stress and apoptosis in human vascular endothelium: implications in atherogenesis. Arterioscler Thromb Vasc Biol. 2005;25(12):2623–9.

    Article  PubMed  CAS  Google Scholar 

  189. Sheikh-Ali M, Sultan S, Alamir AR, Haas MJ, Mooradian AD. Hyperglycemia-induced endoplasmic reticulum stress in endothelial cells. Nutrition. 2010;26(11–12):1146–50.

    Article  PubMed  CAS  Google Scholar 

  190. LaRocca TJ, Henson GD, Thorburn A, Sindler AL, Pierce GL, Seals DR. Translational evidence that impaired autophagy contributes to arterial ageing. J Physiol. 2012;590(Pt 14):3305–16.

    Article  PubMed  CAS  Google Scholar 

  191. Zhang YL, Cao YJ, Zhang X, Liu HH, Tong T, Xiao GD, et al. The autophagy-lysosome pathway: a novel mechanism involved in the processing of oxidized LDL in human vascular endothelial cells. Biochem Biophys Res Commun. 2010;394(2):377–82.

    Article  PubMed  CAS  Google Scholar 

  192. Finan B, Yang B, Ottaway N, Stemmer K, Muller TD, Yi CX, et al. Targeted estrogen delivery reverses the metabolic syndrome. Nat Med. 2012;18(12):1847–56.

    Article  PubMed  CAS  Google Scholar 

  193. Haltia LT, Savontaus E, Vahlberg T, Rinne JO, Kaasinen V. Acute hormonal changes following intravenous glucose challenge in lean and obese human subjects. Scand J Clin Lab Investig. 2010;70(4):275–80.

    Article  CAS  Google Scholar 

  194. Small CJ, Bloom SR. Gut hormones as peripheral anti obesity targets. Curr Drug Targets CNS Neurol Disord. 2004;3(5):379–88.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kieren J. Mather.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mather, K.J. The vascular endothelium in diabetes—a therapeutic target?. Rev Endocr Metab Disord 14, 87–99 (2013). https://doi.org/10.1007/s11154-013-9237-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-013-9237-9

Keywords

Navigation