Skip to main content

Advertisement

Log in

Location, location, location: Genetic regulation of neural sex differences

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Sex differences in many behaviors such as cognition, mood, and motor skills are well-documented in animals and humans and are regulated by many neural circuits. Sexual dimorphisms within cell populations in these circuits play critical roles in the production of these behavioral dichotomies. Here we focus on three proteins that have well described sexual dimorphisms; calbindin-D28k, a calcium binding protein, tyrosine hydroxylase, the rate limiting enzyme involved in dopamine synthesis and vasopressin, a neuropeptide with central and peripheral sites of action. We describe the sex differences in subpopulations of these proteins, with particular emphasis on laboratory mice. Our thrust is to examine genetic bases of sex differences and how the use of genetically modified models has advanced our understanding of this topic. Regional sex differences in the expression of these three proteins are driven by sex chromosome complement, steroid receptors or in some instances both. While studies of sex differences attributable to sex chromosome genes are still few in number it is exciting to note that this variable factors into expression differences for all three of these proteins. Different genetic mechanisms, which elaborate sex differences, may be employed stochastically in different cell populations. Alternately, general patterns involving the timing of differentiation of the sex differences, relative to the “critical period” in hormonal differences between males and female neonates may emerge. In conclusion, future directions in this area should include examination of the importance of location, timing, steroidal receptor/sex chromosome gene synergy and epigenetics in molding neural sex differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Raisman G, Field PM. Sexual dimorphism in the preoptic area of the rat. Science. 1971;173(998):731–3.

    Article  PubMed  CAS  Google Scholar 

  2. Raisman G, Field PM. Sexual dimorphism in the neuropil of the preoptic area of the rat and its dependence on neonatal androgen. Brain Res. 1973;54:1–29.

    Article  PubMed  CAS  Google Scholar 

  3. Harris GW. Sex hormones, brain development and brain function. Endocrinology. 1964;75:627–48.

    Article  PubMed  CAS  Google Scholar 

  4. Gorski RA, Barraclough CA. Effects of low dosages of androgen on the differentiation of hypothalamic regulatory control of ovulation in the rat. Endocrinology. 1963;73:210–6.

    Article  PubMed  CAS  Google Scholar 

  5. Gorski RA, Wagner JW. Gonadal activity and sexual differentiation of the hypothalamus. Endocrinology. 1965;76:226–39.

    Article  PubMed  CAS  Google Scholar 

  6. Barraclough CA. Influence of age, prepubertal androgen treatment and hypothalamic stimulation on adenohypophysial lh content in female rats. Endocrinology. 1966;78(5):1053–60.

    Article  PubMed  CAS  Google Scholar 

  7. Gorski RA, Gordon JH, Shryne JE, Southam AM. Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res. 1978;148(2):333–46.

    Article  PubMed  CAS  Google Scholar 

  8. Phoenix CH, Goy RW, Gerall AA, Young WC. Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology. 1959;65:369–82.

    Article  PubMed  CAS  Google Scholar 

  9. McCarthy MM. The two faces of estradiol: effects on the developing brain. Neuroscientist. 2009;15(6):599–610.

    Article  PubMed  CAS  Google Scholar 

  10. Forger NG. The organizational hypothesis and final common pathways: sexual differentiation of the spinal cord and peripheral nervous system. Horm Behav. 2009;55(5):605–10.

    Article  PubMed  CAS  Google Scholar 

  11. Arnold AP. Sexual differentiation of the zebra finch song system: positive evidence, negative evidence, null hypotheses, and a paradigm shift. J Neurobiol. 1997;33(5):572–84.

    Article  PubMed  CAS  Google Scholar 

  12. De Vries GJ, Rissman EF, Simerly RB, Yang LY, Scordalakes EM, Auger CJ, et al. A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. J Neurosci. 2002;22(20):9005–14.

    PubMed  Google Scholar 

  13. Arnold AP, Chen X. What does the “four core genotypes” mouse model tell us about sex differences in the brain and other tissues? Front Neuroendocrinol. 2009;30(1):1–9.

    Article  PubMed  Google Scholar 

  14. Gubbay J, Vivian N, Economou A, Jackson D, Goodfellow P, Lovell-Badge R. Inverted repeat structure of the sry locus in mice. Proc Natl Acad Sci USA. 1992;89(17):7953–7.

    Article  PubMed  CAS  Google Scholar 

  15. Mahadevaiah SK, Odorisio T, Elliott DJ, Rattigan A, Szot M, Laval SH, et al. Mouse homologues of the human azf candidate gene rbm are expressed in spermatogonia and spermatids, and map to a y chromosome deletion interval associated with a high incidence of sperm abnormalities. Hum Mol Genet. 1998;7(4):715–27.

    Article  PubMed  CAS  Google Scholar 

  16. Baimbridge KG, Miller JJ, Parkes CO. Calcium-binding protein distribution in the rat brain. Brain Res. 1982;239(2):519–25.

    Article  PubMed  CAS  Google Scholar 

  17. Bastianelli E. Distribution of calcium-binding proteins in the cerebellum. Cerebellum. 2003;2(4):242–62.

    Article  PubMed  CAS  Google Scholar 

  18. Kojetin DJ, Venters RA, Kordys DR, Thompson RJ, Kumar R, Cavanagh J. Structure, binding interface and hydrophobic transitions of ca2+−loaded calbindin-d(28 k). Nat Struct Mol Biol. 2006;13(7):641–7.

    Article  PubMed  CAS  Google Scholar 

  19. Schwaller B. The continuing disappearance of “pure” ca2+ buffers. Cell Mol Life Sci. 2009;66(2):275–300.

    Article  PubMed  CAS  Google Scholar 

  20. Stadler F, Schmutz I, Schwaller B, Albrecht U. Lack of calbindin-d28k alters response of the murine circadian clock to light. Chronobiol Int. 2010;27(1):68–82.

    Article  PubMed  CAS  Google Scholar 

  21. Molinari S, Battini R, Ferrari S, Pozzi L, Killcross AS, Robbins TW, et al. Deficits in memory and hippocampal long-term potentiation in mice with reduced calbindin d28k expression. Proc Natl Acad Sci USA. 1996;93(15):8028–33.

    Article  PubMed  CAS  Google Scholar 

  22. Jouvenceau A, Potier B, Poindessous-Jazat F, Dutar P, Slama A, Epelbaum J, et al. Decrease in calbindin content significantly alters ltp but not nmda receptor and calcium channel properties. Neuropharmacology. 2002;42(4):444–58.

    Article  PubMed  CAS  Google Scholar 

  23. Airaksinen MS, Eilers J, Garaschuk O, Thoenen H, Konnerth A, Meyer M. Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin d28k gene. Proc Natl Acad Sci USA. 1997;94(4):1488–93.

    Article  PubMed  CAS  Google Scholar 

  24. Barski JJ, Hartmann J, Rose CR, Hoebeek F, Morl K, Noll-Hussong M, et al. Calbindin in cerebellar purkinje cells is a critical determinant of the precision of motor coordination. J Neurosci. 2003;23(8):3469–77.

    PubMed  CAS  Google Scholar 

  25. Farre-Castany MA, Schwaller B, Gregory P, Barski J, Mariethoz C, Eriksson JL, et al. Differences in locomotor behavior revealed in mice deficient for the calcium-binding proteins parvalbumin, calbindin d-28 k or both. Behav Brain Res. 2007;178(2):250–61.

    Article  PubMed  CAS  Google Scholar 

  26. Stuart E, Lephart ED. Dimorphic expression of medial basal hypothalamic-preoptic area calbindin-d(28 k) mrna during perinatal development and adult distribution of calbindin-d(28 k) mrna in sprague-dawley rats. Brain Res Mol Brain Res. 1999;73(1–2):60–7.

    Article  PubMed  CAS  Google Scholar 

  27. Lephart ED. Dimorphic expression of calbindin-d28k in the medial basal hypothalamus from perinatal male and female rats. Brain Res Dev Brain Res. 1996;96(1–2):281–4.

    Article  PubMed  CAS  Google Scholar 

  28. Brager DH, Sickel MJ, McCarthy MM. Developmental sex differences in calbindin-d(28 k) and calretinin immunoreactivity in the neonatal rat hypothalamus. J Neurobiol. 2000;42(3):315–22.

    Article  PubMed  CAS  Google Scholar 

  29. Sickel MJ, McCarthy MM. Calbindin-d28k immunoreactivity is a marker for a subdivision of the sexually dimorphic nucleus of the preoptic area of the rat: developmental profile and gonadal steroid modulation. J Neuroendocrinol. 2000;12(5):397–402.

    Article  PubMed  CAS  Google Scholar 

  30. McCarthy MM, Schlenker EH, Pfaff DW. Enduring consequences of neonatal treatment with antisense oligodeoxynucleotides to estrogen receptor messenger ribonucleic acid on sexual differentiation of rat brain. Endocrinology. 1993;133(2):433–9.

    Article  PubMed  CAS  Google Scholar 

  31. McEwen BS, Lieberburg I, Chaptal C, Krey LC. Aromatization: important for sexual differentiation of the neonatal rat brain. Horm Behav. 1977;9(3):249–63.

    Article  PubMed  CAS  Google Scholar 

  32. Davis EC, Popper P, Gorski RA. The role of apoptosis in sexual differentiation of the rat sexually dimorphic nucleus of the preoptic area. Brain Res. 1996;734(1–2):10–8.

    Article  PubMed  CAS  Google Scholar 

  33. Pendergast JS, Tuesta LM, Bethea JR. Oestrogen receptor beta contributes to the transient sex difference in tyrosine hydroxylase expression in the mouse locus coeruleus. J Neuroendocrinol. 2008;20(10):1155–64.

    Article  PubMed  CAS  Google Scholar 

  34. Watson MA, Taylor H, Lephart ED. Androgen-dependent modulation of calbindin-d28k in hypothalamic tissue during prenatal development. Neurosci Res. 1998;32(1):97–101.

    Article  PubMed  CAS  Google Scholar 

  35. Silver R, Romero MT, Besmer HR, Leak R, Nunez JM, LeSauter J. Calbindin-d28k cells in the hamster scn express light-induced fos. Neuroreport. 1996;7(6):1224–8.

    Article  PubMed  CAS  Google Scholar 

  36. Brown AE, Mani S, Tobet SA. The preoptic area/anterior hypothalamus of different strains of mice: sex differences and development. Brain Res Dev Brain Res. 1999;115(2):171–82.

    Article  PubMed  CAS  Google Scholar 

  37. Henderson RG, Brown AE, Tobet SA. Sex differences in cell migration in the preoptic area/anterior hypothalamus of mice. J Neurobiol. 1999;41(2):252–66.

    Article  PubMed  CAS  Google Scholar 

  38. Wolfe CA, Van Doren M, Walker HJ, Seney ML, McClellan KM, Tobet SA. Sex differences in the location of immunochemically defined cell populations in the mouse preoptic area/anterior hypothalamus. Brain Res Dev Brain Res. 2005;157(1):34–41.

    Article  PubMed  CAS  Google Scholar 

  39. Edelmann M, Wolfe C, Scordalakes EM, Rissman EF, Tobet S. Neuronal nitric oxide synthase and calbindin delineate sex differences in the developing hypothalamus and preoptic area. Dev Neurobiol. 2007;67(10):1371–81.

    Article  PubMed  CAS  Google Scholar 

  40. Budefeld T, Grgurevic N, Tobet SA, Majdic G. Sex differences in brain developing in the presence or absence of gonads. Dev Neurobiol. 2008;68(7):981–95.

    Article  PubMed  CAS  Google Scholar 

  41. vom Saal FS, Bronson FH. Sexual characteristics of adult female mice are correlated with their blood testosterone levels during prenatal development. Science. 1980;208(4444):597–9.

    Article  Google Scholar 

  42. Pang SF, Tang F. Sex differences in the serum concentrations of testosterone in mice and hamsters during their critical periods of neural sexual differentiation. J Endocrinol. 1984;100(1):7–11.

    Article  PubMed  CAS  Google Scholar 

  43. Motelica-Heino I, Castanier M, Corbier P, Edwards DA, Roffi J. Testosterone levels in plasma and testes of neonatal mice. J Steroid Biochem. 1988;31(3):283–6.

    Article  PubMed  CAS  Google Scholar 

  44. Orikasa C, Sakuma Y. Estrogen configures sexual dimorphism in the preoptic area of c57bl/6j and ddn strains of mice. J Comp Neurol. 2010;518(17):3618–29.

    Article  PubMed  CAS  Google Scholar 

  45. Bodo C, Rissman EF. The androgen receptor is selectively involved in organization of sexually dimorphic social behaviors in mice. Endocrinology. 2008;149(8):4142–50.

    Article  PubMed  CAS  Google Scholar 

  46. Abel JM, Witt DM, Rissman EF. Sex differences in cerebellum and frontal cortex: roles of estrogen receptor α and sex chromosome genes. Neuroendocrinology. 2011;In Press.

  47. Hokfelt T, Johansson O, Fuxe K, Goldstein M, Park D. Immunohistochemical studies on the localization and distribution of monoamine neuron systems in the rat brain ii. Tyrosine hydroxylase in the telencephalon. Med Biol. 1977;55(1):21–40.

    PubMed  CAS  Google Scholar 

  48. Hokfelt T, Johansson O, Fuxe K, Goldstein M, Park D. Immunohistochemical studies on the localization and distribution of monoamine neuron systems in the rat brain. I. Tyrosine hydroxylase in the mes- and diencephalon. Med Biol. 1976;54(6):427–53.

    PubMed  CAS  Google Scholar 

  49. Gu GB, Simerly RB. Projections of the sexually dimorphic anteroventral periventricular nucleus in the female rat. J Comp Neurol. 1997;384(1):142–64.

    Article  PubMed  CAS  Google Scholar 

  50. Bleier R, Byne W, Siggelkow I. Cytoarchitectonic sexual dimorphisms of the medial preoptic and anterior hypothalamic areas in guinea pig, rat, hamster, and mouse. J Comp Neurol. 1982;212(2):118–30.

    Article  PubMed  CAS  Google Scholar 

  51. Simerly RB, Swanson LW, Gorski RA. The distribution of monoaminergic cells and fibers in a periventricular preoptic nucleus involved in the control of gonadotropin release: immunohistochemical evidence for a dopaminergic sexual dimorphism. Brain Res. 1985;330(1):55–64.

    Article  PubMed  CAS  Google Scholar 

  52. Arai Y, Murakami S, Nishizuka M. Androgen enhances neuronal degeneration in the developing preoptic area: apoptosis in the anteroventral periventricular nucleus (avpvn-poa). Horm Behav. 1994;28(4):313–9.

    Article  PubMed  CAS  Google Scholar 

  53. Sumida H, Nishizuka M, Kano Y, Arai Y. Sex differences in the anteroventral periventricular nucleus of the preoptic area and in the related effects of androgen in prenatal rats. Neurosci Lett. 1993;151(1):41–4.

    Article  PubMed  CAS  Google Scholar 

  54. Murakami S, Arai Y. Neuronal death in the developing sexually dimorphic periventricular nucleus of the preoptic area in the female rat: effect of neonatal androgen treatment. Neurosci Lett. 1989;102(2–3):185–90.

    Article  PubMed  CAS  Google Scholar 

  55. Merry DE, Korsmeyer SJ. Bcl-2 gene family in the nervous system. Annu Rev Neurosci. 1997;20:245–67.

    Article  PubMed  CAS  Google Scholar 

  56. Forger NG, Rosen GJ, Waters EM, Jacob D, Simerly RB, de Vries GJ. Deletion of bax eliminates sex differences in the mouse forebrain. Proc Natl Acad Sci USA. 2004;101(37):13666–71.

    Article  PubMed  CAS  Google Scholar 

  57. Forger NG. Cell death and sexual differentiation of the nervous system. Neuroscience. 2006;138(3):929–38.

    Article  PubMed  CAS  Google Scholar 

  58. Krishnan S, Intlekofer KA, Aggison LK, Petersen SL. Central role of traf-interacting protein in a new model of brain sexual differentiation. Proc Natl Acad Sci USA. 2009;106(39):16692–7.

    Article  PubMed  CAS  Google Scholar 

  59. Simerly RB, Swanson LW, Handa RJ, Gorski RA. Influence of perinatal androgen on the sexually dimorphic distribution of tyrosine hydroxylase-immunoreactive cells and fibers in the anteroventral periventricular nucleus of the rat. Neuroendocrinology. 1985;40(6):501–10.

    Article  PubMed  CAS  Google Scholar 

  60. Simerly RB, Zee MC, Pendleton JW, Lubahn DB, Korach KS. Estrogen receptor-dependent sexual differentiation of dopaminergic neurons in the preoptic region of the mouse. Proc Natl Acad Sci USA. 1997;94(25):14077–82.

    Article  PubMed  CAS  Google Scholar 

  61. Simerly RB. Hormonal control of the development and regulation of tyrosine hydroxylase expression within a sexually dimorphic population of dopaminergic cells in the hypothalamus. Brain Res Mol Brain Res. 1989;6(4):297–310.

    Article  PubMed  CAS  Google Scholar 

  62. Waters EM, Simerly RB. Estrogen induces caspase-dependent cell death during hypothalamic development. J Neurosci. 2009;29(31):9714–8.

    Article  PubMed  CAS  Google Scholar 

  63. Choi WS, Lee E, Lim J, Oh YJ. Calbindin-d28k prevents drug-induced dopaminergic neuronal death by inhibiting caspase and calpain activity. Biochem Biophys Res Commun. 2008;371(1):127–31.

    Article  PubMed  CAS  Google Scholar 

  64. Gill RK, Christakos S. Regulation by estrogen through the 5′-flanking region of the mouse calbindin-d28k gene. Mol Endocrinol. 1995;9(3):319–26.

    Article  PubMed  CAS  Google Scholar 

  65. Zup SL, Carrier H, Waters EM, Tabor A, Bengston L, Rosen GJ, et al. Overexpression of bcl-2 reduces sex differences in neuron number in the brain and spinal cord. J Neurosci. 2003;23(6):2357–62.

    PubMed  CAS  Google Scholar 

  66. Engele J, Pilgrim C, Reisert I. Sexual differentiation of mesencephalic neurons in vitro: effects of sex and gonadal hormones. Int J Dev Neurosci. 1989;7(6):603–11.

    Article  PubMed  CAS  Google Scholar 

  67. Reisert I, Pilgrim C. Sexual differentiation of monoaminergic neurons–genetic or epigenetic? Trends Neurosci. 1991;14(10):468–73.

    Article  PubMed  CAS  Google Scholar 

  68. Beyer C, Pilgrim C, Reisert I. Dopamine content and metabolism in mesencephalic and diencephalic cell cultures: sex differences and effects of sex steroids. J Neurosci. 1991;11(5):1325–33.

    PubMed  CAS  Google Scholar 

  69. Kopsida E, Stergiakouli E, Lynn PM, Wilkinson LS, Davies W. The role of the y chromosome in brain function. Open Neuroendocrinol J. 2009;2:20–30.

    Article  PubMed  CAS  Google Scholar 

  70. Sibug R, Kuppers E, Beyer C, Maxson SC, Pilgrim C, Reisert I. Genotype-dependent sex differentiation of dopaminergic neurons in primary cultures of embryonic mouse brain. Brain Res Dev Brain Res. 1996;93(1–2):136–42.

    Article  PubMed  CAS  Google Scholar 

  71. Carruth LL, Reisert I, Arnold AP. Sex chromosome genes directly affect brain sexual differentiation. Nat Neurosci. 2002;5(10):933–4.

    Article  PubMed  CAS  Google Scholar 

  72. Dewing P, Chiang CW, Sinchak K, Sim H, Fernagut PO, Kelly S, et al. Direct regulation of adult brain function by the male-specific factor sry. Curr Biol. 2006;16(4):415–20.

    Article  PubMed  CAS  Google Scholar 

  73. Goodson JL, Kabelik D. Dynamic limbic networks and social diversity in vertebrates: from neural context to neuromodulatory patterning. Front Neuroendocrinol. 2009;30(4):429–41.

    Article  PubMed  CAS  Google Scholar 

  74. Aoyagi T, Koshimizu TA, Tanoue A. Vasopressin regulation of blood pressure and volume: findings from v1a receptor-deficient mice. Kidney Int. 2009;76(10):1035–9.

    Article  PubMed  CAS  Google Scholar 

  75. Lightman S. Central nervous system control of fluid balance: physiology and pathology. Acta Neurochir Suppl (Wien). 1990;47:90–4.

    CAS  Google Scholar 

  76. Lightman SL. The neuroendocrinology of stress: a never ending story. J Neuroendocrinol. 2008;20(6):880–4.

    Article  PubMed  CAS  Google Scholar 

  77. Buijs RM, De Vries GJ, Van Leeuwen FW, Swaab DF. Vasopressin and oxytocin: distribution and putative functions in the brain. Prog Brain Res. 1983;60:115–22.

    Article  PubMed  CAS  Google Scholar 

  78. Rood BD, Murray EK, Laroche J, Yang MK, Blaustein JD, De Vries GJ. Absence of progestin receptors alters distribution of vasopressin fibers but not sexual differentiation of vasopressin system in mice. Neuroscience. 2008;154(3):911–21.

    Article  PubMed  CAS  Google Scholar 

  79. De Wied D. Behavioral effects of pituitary peptides. Acta Physiol Pol. 1977;28(15):77–91.

    PubMed  Google Scholar 

  80. Wang Z, Young LJ, De Vries GJ, Insel TR. Voles and vasopressin: a review of molecular, cellular, and behavioral studies of pair bonding and paternal behaviors. Prog Brain Res. 1998;119:483–99.

    Article  PubMed  CAS  Google Scholar 

  81. Dantzer R, Koob GF, Bluthe RM, Le Moal M. Septal vasopressin modulates social memory in male rats. Brain Res. 1988;457(1):143–7.

    Article  PubMed  CAS  Google Scholar 

  82. Moore FL, Zoeller RT. Endocrine control of amphibian sexual behavior: evidence for a neurohormone-androgen interaction. Horm Behav. 1979;13(3):207–13.

    Article  PubMed  CAS  Google Scholar 

  83. Everts HG, De Ruiter AJ, Koolhaas JM. Differential lateral septal vasopressin in wild-type rats: correlation with aggression. Horm Behav. 1997;31(2):136–44.

    Article  PubMed  CAS  Google Scholar 

  84. Neumann ID, Veenema AH, Beiderbeck DI. Aggression and anxiety: social context and neurobiological links. Front Behav Neurosci. 2010;4:12.

    PubMed  Google Scholar 

  85. Parker KJ, Lee TM. Central vasopressin administration regulates the onset of facultative paternal behavior in microtus pennsylvanicus (meadow voles). Horm Behav. 2001;39(4):285–94.

    Article  PubMed  CAS  Google Scholar 

  86. Li JD, Burton KJ, Zhang C, Hu SB, Zhou QY. Vasopressin receptor v1a regulates circadian rhythms of locomotor activity and expression of clock-controlled genes in the suprachiasmatic nuclei. Am J Physiol Regul Integr Comp Physiol. 2009;296(3):R824–30.

    Article  PubMed  CAS  Google Scholar 

  87. Meisenberg G, Simmons WH. Centrally mediated effects of neurohypophyseal hormones. Neurosci Biobehav Rev. 1983;7(2):263–80.

    Article  PubMed  CAS  Google Scholar 

  88. Albers HE, Hennessey AC, Whitman DC. Vasopressin and the regulation of hamster social behavior. Ann NY Acad Sci. 1992;652:227–42.

    Article  PubMed  CAS  Google Scholar 

  89. de Vries GJ. Sex differences in vasopressin and oxytocin innervation of the brain. Prog Brain Res. 2008;170:17–27.

    Article  PubMed  CAS  Google Scholar 

  90. van Leeuwen FW, Caffe AR, De Vries GJ. Vasopressin cells in the bed nucleus of the stria terminalis of the rat: sex differences and the influence of androgens. Brain Res. 1985;325(1–2):391–4.

    Article  PubMed  Google Scholar 

  91. Miller MA, Vician L, Clifton DK, Dorsa DM. Sex differences in vasopressin neurons in the bed nucleus of the stria terminalis by in situ hybridization. Peptides. 1989;10(3):615–9.

    Article  PubMed  CAS  Google Scholar 

  92. Han TM, De Vries GJ. Organizational effects of testosterone, estradiol, and dihydrotestosterone on vasopressin mrna expression in the bed nucleus of the stria terminalis. J Neurobiol. 2003;54(3):502–10.

    Article  PubMed  CAS  Google Scholar 

  93. Lonstein JS, Rood BD, De Vries GJ. Unexpected effects of perinatal gonadal hormone manipulations on sexual differentiation of the extrahypothalamic arginine-vasopressin system in prairie voles. Endocrinology. 2005;146(3):1559–67.

    Article  PubMed  CAS  Google Scholar 

  94. Desbonnet L, Garrett L, Daly E, McDermott KW, Dinan TG. Sexually dimorphic effects of maternal separation stress on corticotrophin-releasing factor and vasopressin systems in the adult rat brain. Int J Dev Neurosci. 2008;26(3–4):259–68.

    Article  PubMed  CAS  Google Scholar 

  95. Bester-Meredith JK, Marler CA. Vasopressin and aggression in cross-fostered california mice (peromyscus californicus) and white-footed mice (peromyscus leucopus). Horm Behav. 2001;40(1):51–64.

    Article  PubMed  CAS  Google Scholar 

  96. Scordalakes EM, Rissman EF. Aggression and arginine vasopressin immunoreactivity regulation by androgen receptor and estrogen receptor alpha. Genes Brain Behav. 2004;3(1):20–6.

    Article  PubMed  CAS  Google Scholar 

  97. Plumari L, Viglietti-Panzica C, Allieri F, Honda S, Harada N, Absil P, et al. Changes in the arginine-vasopressin immunoreactive systems in male mice lacking a functional aromatase gene. J Neuroendocrinol. 2002;14(12):971–8.

    Article  PubMed  CAS  Google Scholar 

  98. Pierman S, Sica M, Allieri F, Viglietti-Panzica C, Panzica GC, Bakker J. Activational effects of estradiol and dihydrotestosterone on social recognition and the arginine-vasopressin immunoreactive system in male mice lacking a functional aromatase gene. Horm Behav. 2008;54(1):98–106.

    Article  PubMed  CAS  Google Scholar 

  99. Bakker J, De Mees C, Douhard Q, Balthazart J, Gabant P, Szpirer J, et al. Alpha-fetoprotein protects the developing female mouse brain from masculinization and defeminization by estrogens. Nat Neurosci. 2006;9(2):220–6.

    Article  PubMed  CAS  Google Scholar 

  100. Gatewood JD, Wills A, Shetty S, Xu J, Arnold AP, Burgoyne PS, et al. Sex chromosome complement and gonadal sex influence aggressive and parental behaviors in mice. J Neurosci. 2006;26(8):2335–42.

    Article  PubMed  CAS  Google Scholar 

  101. Reisert I, Lieb K, Beyer C, Pilgrim C. Sex differentiation of rat hippocampal gabaergic neurons. Eur J Neurosci. 1996;8(8):1718–24.

    Article  PubMed  CAS  Google Scholar 

  102. Chen X, Grisham W, Arnold AP. X chromosome number causes sex differences in gene expression in adult mouse striatum. Eur J Neurosci. 2009;29(4):768–76.

    Article  PubMed  Google Scholar 

  103. Sotelo C. Purkinje cell ontogeny: formation and maintenance of spines. Prog Brain Res. 1978;48:149–70.

    Article  PubMed  CAS  Google Scholar 

  104. Altman J. Autoradiographic and histological studies of postnatal neurogenesis. 3. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J Comp Neurol. 1969;136(3):269–93.

    Article  PubMed  CAS  Google Scholar 

  105. Goldowitz D, Hamre K. The cells and molecules that make a cerebellum. Trends Neurosci. 1998;21(9):375–82.

    Article  PubMed  CAS  Google Scholar 

  106. Iacopino AM, Rhoten WB, Christakos S. Calcium binding protein (calbindin-d28k) gene expression in the developing and aging mouse cerebellum. Brain Res Mol Brain Res. 1990;8(4):283–90.

    Article  PubMed  CAS  Google Scholar 

  107. Enderlin S, Norman AW, Celio MR. Ontogeny of the calcium binding protein calbindin d-28 k in the rat nervous system. Anat Embryol (Berl). 1987;177(1):15–28.

    Article  CAS  Google Scholar 

  108. Dean SL, McCarthy MM. Steroids, sex and the cerebellar cortex: implications for human disease. Cerebellum. 2008;7(1):38–47.

    Article  PubMed  CAS  Google Scholar 

  109. Tsutsui K. Neurosteroids in the purkinje cell: biosynthesis, mode of action and functional significance. Mol Neurobiol. 2008;37(2–3):116–25.

    Article  PubMed  CAS  Google Scholar 

  110. Honda S, Harada N, Abe-Dohmae S, Takagi Y. Identification of cis-acting elements in the proximal promoter region for brain-specific exon 1 of the mouse aromatase gene. Brain Res Mol Brain Res. 1999;66(1–2):122–32.

    Article  PubMed  CAS  Google Scholar 

  111. Hutchison JB, Wozniak A, Beyer C, Karolczak M, Hutchison RE. Steroid metabolising enzymes in the determination of brain gender. J Steroid Biochem Mol Biol. 1999;69(1–6):85–96.

    Article  PubMed  CAS  Google Scholar 

  112. Lephart ED. Molecular aspects of brain aromatase cytochrome p450. J Steroid Biochem Mol Biol. 1997;61(3–6):375–80.

    Article  PubMed  CAS  Google Scholar 

  113. Yilmaz MB, Wolfe A, Cheng YH, Glidewell-Kenney C, Jameson JL, Bulun SE. Aromatase promoter i.F is regulated by estrogen receptor alpha (esr1) in mouse hypothalamic neuronal cell lines. Biol Reprod. 2009;81(5):956–65.

    Article  PubMed  CAS  Google Scholar 

  114. Shapiro RA, Xu C, Dorsa DM. Differential transcriptional regulation of rat vasopressin gene expression by estrogen receptor alpha and beta. Endocrinology. 2000;141(11):4056–64.

    Article  PubMed  CAS  Google Scholar 

  115. Murgatroyd C, Wu Y, Bockmuhl Y, Spengler D. Genes learn from stress: how infantile trauma programs us for depression. Epigenetics. 2010;5(3).

  116. Meck WH, Williams CL. Metabolic imprinting of choline by its availability during gestation: implications for memory and attentional processing across the lifespan. Neurosci Biobehav Rev. 2003;27(4):385–99.

    Article  PubMed  CAS  Google Scholar 

  117. Pacelli C, Coluccia A, Grattagliano I, Cocco T, Petrosillo G, Paradies G, et al. Dietary choline deprivation impairs rat brain mitochondrial function and behavioral phenotype. J Nutr. 2010;140(6):1072–9.

    Article  PubMed  CAS  Google Scholar 

  118. Mehedint MG, Niculescu MD, Craciunescu CN, Zeisel SH. Choline deficiency alters global histone methylation and epigenetic marking at the re1 site of the calbindin 1 gene. FASEB J. 2010;24(1):184–95.

    Article  PubMed  CAS  Google Scholar 

  119. Roopra A, Qazi R, Schoenike B, Daley TJ, Morrison JF. Localized domains of g9a-mediated histone methylation are required for silencing of neuronal genes. Mol Cell. 2004;14(6):727–38.

    Article  PubMed  CAS  Google Scholar 

  120. Xu J, Deng X, Disteche CM. Sex-specific expression of the x-linked histone demethylase gene jarid1c in brain. PLoS ONE. 2008;3(7):e2553.

    Article  PubMed  CAS  Google Scholar 

  121. Xu J, Deng X, Watkins R, Disteche CM. Sex-specific differences in expression of histone demethylases utx and uty in mouse brain and neurons. J Neurosci. 2008;28(17):4521–7.

    Article  PubMed  CAS  Google Scholar 

  122. Tsai HW, Grant PA, Rissman EF. Sex differences in histone modifications in the neonatal mouse brain. Epigenetics. 2009;4(1):47–53.

    Article  PubMed  CAS  Google Scholar 

  123. Kurian JR, Olesen KM, Auger AP. Sex differences in epigenetic regulation of the estrogen receptor-alpha promoter within the developing preoptic area. Endocrinology. 2010;151(5):2297–305.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Paul Bonthuis for constructive comments on this manuscript. The work by the authors reported here was supported by National Institutes of Health R01NS055218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean LeBeau Abel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abel, J.L., Rissman, E.F. Location, location, location: Genetic regulation of neural sex differences. Rev Endocr Metab Disord 13, 151–161 (2012). https://doi.org/10.1007/s11154-011-9186-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-011-9186-0

Keywords

Navigation