Skip to main content
Log in

Shock-Resistant Materials Based on Commercial Grade Ceramic: Achievements and Prospects for Improving Their Ballistic Efficiency

  • Published:
Refractories and Industrial Ceramics Aims and scope

The main approaches are formulated for improving the ballistic efficiency of ceramic composite armor protection based on improving the structure of shock-resistant ceramic materials and ceramic armor elements at nano-, micro-, and macro-levels. The contemporary state and development trends are reviewed and analyzed for ways of improving ballistic properties that are based on forming a fine-grained monolithic ceramic structure, creation of composite (dispersion-strengthened and fiber-reinforced) ceramic materials, creation of materials with properties varied throughout the volume (layered and graded), and creation of a discrete (mosaic) ceramic layer structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V. A. Grigoryan, I. F. Kobylkin, V. M. Marinin, and E. N. Chistyakov, Materials and Protective Structures for Local and Individual Armor (V. A. Grigoryan, editor), [in Russian], RadioSoft, Moscow (2008).

  2. Light Ballistic Materials (A. Bkhatnagar, editor) [in Russian], Tekhnosfera, Moscow (2011).

  3. I. Yu. Kelina, V. V. Lenskii, N. A. Golubeva, et al., “Shock-resistant ceramic based on silicon carbide,” Ogneupor. Tekhn. Keram., No. 1/2, 17 – 24 (2010).

  4. D. Viechnicki,W. Blumenthal, M. Slavin, et al., “Armor ceramics,” Third TACOM Armor Coordinating Conference (1987).

  5. R. W. Rice, Mechanical Properties of Ceramics and Composites: Grain and Particle Effects, Marcel Dekker, Inc., New York (2000).

  6. E. Medvedovski, “Alumina ceramics for ballistic protection: Part 2,” Amer. Ceram. Soc. Bull., 81(4), 45 – 50 (2002).

    Google Scholar 

  7. E. Medvedovski, “Alumina ceramics for ballistic protection: Part 1,” Amer. Ceram. Soc. Bull., 81(3), 27 – 32 (2002).

    Google Scholar 

  8. A. P. Garshin, Materials Science. Commercial Ceramics in Engineering: Textbook [in Russian], Izd. Politekh. Univ., St. Petersburg (2012).

  9. E. O. Hall, “The deformation and ageing of mild steel: III Discussion of results,” Proc. Phys. Soc. B., 64, 747 – 753 (1951).

    Article  Google Scholar 

  10. N. J. Petch, “The cleavage strength of polycrystals,” J. Iron Steel, 174, 25 – 28 (1953).

    Google Scholar 

  11. S. Zhang, D. Sun, Y. Fu, and H. Du, “Recent advances of superhard nanocomposite coatings: a review,” Surface Coatings Technol., 167, 113 – 119 (2003).

    Article  Google Scholar 

  12. I. Yu. Kelina, L. A. Chevykalova, I. L. Mikhal’shuk, et al., “Improvement of corundum ceramic ballistic efficiency,” Proc. XX Internat. Sci.-Tech. Conf., “Construction and technology for preparing objects made from nonmetallic materials,” Obninsk (2013).

  13. P. G. Karandikar, G. Evans, S.Wong, et al., “A review of ceramics for armor applications,” Advances in Ceramic Armor IV: Ceram. Eng. and Sci. Proc., 29(6), 163 – 175 (2009).

  14. M. Aghajanian, C. Emmons, S. Rummel, et al., “Effect of grain size on microstructure, properties, and surface roughness of reaction bonded SiC ceramics,” Proc. SPIE “Material Technologies and Applications to Optics, Structures, Components and Sub-Systems” (2013).

  15. I. V. Blinkov, V. N. Anikin, A. V. Elyutin, and K. A. Myagkov, “Use of born carbide nanopowder for manufacturing high-strength cerasmic, “ [Electronic source]. Access regime: http://rusnanotech09.rusnanoforum.ru/Public/LargeDocs/theses/rus/poster/08/Blinkov I.pdf.

  16. S. N. Varrava, “Main trends in construction of ceramic composite armor,” Voprosy Oboronnoi Tekhniki, No. 3/4 (1999).

  17. Z. Keçeli, H. Ögünç, T. Boyraz, et al., “Effects of B4C addition on the microstructural and thermal properties of hot pressed SiC ceramic matrix composites,” J. Achievements in Materials and Manufacturing Eng., 37, No. 2, 423 – 428 (2009).

    Google Scholar 

  18. X. Sun, J.-G. Li, S. Guo, and Z. Xiu, “Intragranular particle residual stress strengthening of Al2O3–SiC nanocomposites,” J. Amer. Ceram. Soc., 88(6), 1536 – 1543 (2005).

    Article  Google Scholar 

  19. G. C. Wei and P. F. Becher, “Improvements in mechanical properties in SiC by the addition of TiC particles,” J. Amer. Ceram. Soc., 67(9), 571 – 574 (1984).

    Article  Google Scholar 

  20. M. A. Janney, “Mechanical properties and oxidation behavior of a hot-pressed SiC – 15 vol.% TiB2,” Amer. Ceram. Soc. Bull., 66(2), 322 – 324 (1987).

    Google Scholar 

  21. M. Kasiarova, J. Dusza, M. Hnatko, and P. Sajgalik, “Microstructure and mechanical properties of Si3N4–SiC nanocomposites,” Conf. Proc. “Nanocon 2009”. Czech Republic (2009).

  22. I. S. Gordeev, “ceramic boron nitride — silicon carbide — silicon ceramic materials,” Author’s Abstr. Diss. Cand. Techn. Sci., St. Petersburg (2015).

  23. D. T. Jiang, K. Thomson, J. D. Kuntz, et al., “Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina-based nanocomposite,” Scripta Mater., 56(11), 959 – 962 (2007).

    Article  Google Scholar 

  24. K. Ahmad and W. Pan, “Hybrid nanocomposites: A new route towards tougher alumina ceramics,” Composites Science Technol., 68(6), 1321 – 1327 (2008).

    Article  Google Scholar 

  25. Y. F. Zhu, L. Shi, and C. Zhang, “Preparation and properties of alumina composites modified by electric field-induced alignment of carbon nanotubes,” Appl. Phys. A: Mat. Sci. & Proc., 89(3), 761 – 767 (2007).

    Article  Google Scholar 

  26. 26. G. Yamamoto, M. Omori, T. Hashida, and H. Kimura, “A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties,” Nanotechnology, 19(31), Article No. 315708 (2008).

  27. G. Yamamoto, M. Omori, and T. Hashida, “Preparation of carbon nanotube—toughened alumina composites,”WATER DYNAMICS: 5th Intern.Workshop onWater Dynamics. AIP Conf. Proc. (2008).

  28. 28. T. Wei, Z. J. Fan, G. H. Luo, and F. Wei, “A new structure for multi-walled carbon nanotubes reinforced alumina nanocomposite with high strength and toughness,” Mater. Lett., 62(4/5), 641=644 (2008).

  29. 29. M. Estili and A. Kawasaki,” An approach to mass-producing individually alumina-decorated multi-walled carbon nanotubes with optimized and controlled compositions,” Scripta Materialia, 58(10), 906 – 909 (2008).

  30. K. S. Zaramenskikh, “Carbon nanotubes for ceramic composites,” Diss. Cand. Techn. Sci., Moscow (2011).

  31. S. S. Samal and S. Bal, “Carbon nanotube reinforced ceramic matrix composites—a review,” J. Minerals & Materials Characterization & Eng., 7, No. 4, 355 – 370 (2008).

    Article  Google Scholar 

  32. N. A. Fedosova, P. P. Faikov, N. A. Popova, et al., “Ceramic armor alloyed with carbon nanotubes: preparation, modeling, optimization,” Chemical Technology and Biotechnology of New Materials and Products: Proc. VI Internat. Conf. of the D. I. Mendeleev Russian Chemical Soc., Moscow (2014).

  33. R. Z. Ma, J.Wu, B. Q.Wei, et al., “Processing and properties of carbon nanotubes — nano-SiC ceramic,” J. Mater. Sci., 33(21), 5243 – 5246 (1998).

  34. P. G. Karandikar, G. Evans, and M. K. Aghajanian, “Carbon nanotube (CNT) and carbon fiber reinforced high toughness reaction bonded composites,” Ceram. Eng. and Sci. Proc., 28(6), 53 – 63 (2007).

    Google Scholar 

  35. Y. Morisada, Y. Miyamoto, Y. Takaura, et al., “Mechanical properties of SiC composites incorporating SiC-coated multi-walled carbon nanotubes,” Int. J. Refractory Metals and Hard Materials, 25(4), 322 – 327 (2007).

    Article  Google Scholar 

  36. V. S. Eliseev, A. D. Kravchenko, V. V. Yarosh, “Research of ballistic efficiency of materials,” Vopr. oboron. tekhniki, No. 3/4 (2001).

  37. A. P. Garshin, V. I. Kulik, A. S. Nilov, “Frictional materials based on fiber-reinforced composites with carbon and ceramic matrix for braking systems,” Novye Ogneupory, No. 9, 54 – 60 (2008).

  38. X. Wang, D. Zhu, P. Li, et al., “Behavior of short carbon fibers in Cfiber/Si3N4 composites by hot pressed sintering,” J. Reinforced Plastics and Composites, 28(2), 167 – 173 (2009).

    Article  Google Scholar 

  39. H.-Y. Wang, Q. Liu, Y. Zhou, et al., “Preparation and properties of carbon fiber/Si3N4 composites,” J. Inorg. Mat., 29(9), 1003 – 1008 (2014).

    Article  Google Scholar 

  40. R. A. J. Sambell, A. Briggs, D. C. Phillips, and D. H. Bowen, “Carbon fibre composites with ceramic and glass matrices,” J. Mat. Sci., 7(6), 676 – 681 (1972).

    Article  Google Scholar 

  41. D. Jiang, “R&D of advanced ceramics activities in China and Shanghai institute of ceramics Chinese academy of sciences (SICFAS),” Ceram. Eng. and Sci. Proc., 30(2), 3 – 22 (2009).

    Google Scholar 

  42. T. Tiegs (N. P. Bansal, editor) SiC Whisker Reinforced Alumina. Handbook of Ceramic Composites, Kluwer Academic Publishers (2005).

  43. B. Heidenreich, W. Krenkel, and B. Lexow, “Development of CMC-Materials for lightweight armor,” Ceram. Eng. and Sci. Proc., 24(3), 375 – 381 (2003).

    Article  Google Scholar 

  44. U. Gruber, M. Heine, A. Kienzle, and R. Nixdorf, US Patent 6709736. Armored products made of fiber-reinforced composite material with ceramic matrix, Publ. 01.23.04.

  45. T. E. Strasser and S. D. Atmur, US Patent 6314858 Â1. Fiber reinforced ceramic matrix composite armor, Publ. 11.13.01.

  46. Handbook of Ceramic Composites, (N. P. Bansal, editor) Kluwer Academic Publishers (2005).

  47. Z. S. Rak, L. D. Berkeveld. And G. Snijders, Cf/SiC Composites by a Novel Manufacturing Method, ECNRX–00-040 (2000).

  48. [Electronic source]. Access regime: www.sglgroup.com/…/ballistic…ceramics/index.html.

  49. V. I. Rumyantsev, R. L. Sapronov, and V. A. Mekh, RF Patent 2415109. Nanostructured ceramic matrix composite material and preparation method, Publ. 03.27.11.

  50. V. I. Rumyantsev, R. L. Sapronov, and V. A. Mekh, RF Patent 2457192. Ceramic matrix composite material with strengthening reinforcement component and preparation method, Publ. 07.27.12.

  51. H. Yu, X. Zhou, W. Zhang, et al., “Properties of carbon nano-tubes–Cf/SiC composite by precursor infiltration and pyrolysis process,” Materials and Design, 32, 3516 – 3520 (201).

  52. L. Charbonnel, J. Etienne, Y. Remillieux, et al., US Patent 5114772. Protective material having a multilayer ceramic structure, Publ. 05.19.92.

  53. B. Benitsch and E. Pfitzmaier, US Patent 2009/0324966 A1. Multilayer armor plating and process for producing the plating, Publ. 12.31.09.

  54. T. E. Strasser and S. D. Atmur, US Patent 6135006 US. Fiber reinforced ceramic matrix composite armor, Publ. 10.24.00.

  55. C. E. Bird and J. E. Holowczak, US Patent 2008/0271595 A1. Lightweight projectile resistant armor system, Publ. 11.06.08.

  56. L. M. Sheppard, “Enhancing performance of ceramic composites,” Amer. Ceram. Soc. Bull., 70(4), 617 – 631 (1992).

    Google Scholar 

  57. D.W. Templeton, T. J. Gorsich, and T. J. Holmquist, “Computational study of a functionally graded ceramic-metallic armor,” 23rd International Symposium on Ballistics, Tarragona, Spain, 16 – 20 April, 2007.

  58. B. Benitsch, M. Heine, S. Schweizer, and R.-Z. Chopin, US Patent 2007/0116939 A1. Fiber reinforced composite for protective armor, and method for producing the fiber-reinforced composition and protective armor, Publ. 05.24.07.

  59. V. I. Rumyantsev, R. L. Sapronov, V. A. Mekh, and S. A. Suvorov, RF Patent 2428395. Nanostructured functionally-graded composite material and preparation method, Publ. 09.10.11.

  60. W. Krenkel, “Carbon fiber reinforced CMC for high-performance structures,” Int. J. Applied Ceram. Technol., 1(2), 188 – 200 (2004).

    Article  Google Scholar 

  61. V. A. Grigoryan, O. B. Dashevskaya, A. I. Egorov, and V. A. Khromushkin, “Ballistic properties of organoceramic panels for use in individual protection media,” Proc. 8th All-Russia Conf. “Important problems of protection and safety,” NPO SM, St Petersburg (2005).

  62. [Electronic source]. Access regime: http://www.arms-expo.ru/news/archive/novaya-bronyadlya-rossiyskih-vs14-09-2007.

  63. The HybridTech Armor® Technology—Ballistic Armor [Electronic source]. Access regime: http://www.alsic.com/HybrdTech-Technology.html.

  64. Z. D. Mar, US Patent 2007/0089597. Lightweight composite armor, Publ. 04.36.07.

  65. G. P. Zaitsev, “Corundum Ceramic: manufacturing experience and application,” Ekspert Soyuz, No. 3, 43 – 46 (2011).

  66. F. K. Ko, A. J. Geshury, and J. W. Song, “Behavior of gradient designed composite under ballistic impact,” Proc. ICFM–11, Gold Coast, Australia, 14th – 18th July 1997. Vol. II: Fatigue, Fracture and Ceramic Matrix Composites (1997).

  67. J. M. Jovicic, “Numerical modeling and analysis of static and ballistic behavior of multi-layered/multiphase composite materials using detailed microstructural discretization,” Thesis of Doctor of Philosophy (2003).

  68. F. Matthews and R. M. Rolings, Composite Materials. Mechanics and Technology [in Russian], Tekhnosfera (2004).

  69. A. I. Maksimov, V. A. Moshnikov, Yu. M. Tairov, et al., Bases of Sol-Gel technology and Nanocomposites [in Russian], Élmor, St. Petersburg (2008).

  70. G. D. Semchenko, L. A. Angolenko, I. N. Opryshko, et al., “Synthesis of nanoformations during heat treatment in a nitrogen atmosphere and with HP of a charge of SiC and Si3N4 using a sol-gel composition,” Proc. V All-Russia Conf. “Ceramics and Composite materials,” 20 – 27 June 2004, Syktyvkar (2004).

  71. Y. Yang and F. Xu, “Experimental and numerical investigation on hypervelocity impact response of 2D plain-women C/SiC composite,” J. Mech. Sci. and Techn., 29(1), 11 – 16 (2015).

    Article  Google Scholar 

  72. J. Salem, “Transparent armor ceramics as spacecraft windows,” J. Amer. Ceram. Soc., 96(1), 281 – 289 (2013).

    Article  Google Scholar 

  73. A. V. Galakhov, V. A. Zelenskii, L. V. Vinogradov, et al., “Aluminum oxynitride synthesis from original organic compounds,” Novye Ogneupory, No. 8, 56 – 58 (2012).

  74. S.-L. Shi and J. Liang, “The effect of multi-wall carbon nanotubes on electromagnetic interference shielding of ceramic composites,” Nanotechnology, 19, 255707 (5 p) (2008).

  75. 75. Q. Li, X. Yin,W. Duan, et al., “Improved dielectric and electromagnetic interference shielding properties of ferrocene-modified polycarbosilane derived SiC/C composite ceramics,” J. Europ. Ceram. Soc., 3/4(10), 2187 – 2201 (2014).

  76. Z. Huang, W. Zhou, R. Ma, et al., “Dielectric and mechanical properties of hot-pressed sintered Csf/Al2O3 ceramic composites,” Int. J. Applied Ceram. Techn., 9(2), 413 – 420 (2012).

    Article  Google Scholar 

  77. Yu. K. Nepochatov, “Development of compositions and technology for corundum ceramic armor with a radio-absorbed ferrite-containing coating,” Diss. Cand. Techn. Sci., Novosibirsk (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Garshin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garshin, A.P., Kulik, V.I. & Nilov, A.S. Shock-Resistant Materials Based on Commercial Grade Ceramic: Achievements and Prospects for Improving Their Ballistic Efficiency. Refract Ind Ceram 57, 207–219 (2016). https://doi.org/10.1007/s11148-016-9955-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-016-9955-0

Keywords

Navigation