Skip to main content
Log in

A Top-Down Approach for Asset-Backed Securities: A Consistent Way of Managing Prepayment, Default and Interest Rate Risks

  • Published:
The Journal of Real Estate Finance and Economics Aims and scope Submit manuscript

Abstract

We define a new approach to manage prepayment, default and interest rate risks simultaneously in some standard asset-backed securities structures. We propose a parsimonious top-down approach, by modeling directly the portfolio loss process and the amortization process. Both are correlated to interest rates. The methodology is specified for sequential- and pro-rata pay bonds (ABS, CMO, CDO of ABS), cash or synthetic. We prove analytical formulas to price all tranches, under and without the simplifying assumption that amortization occurs in the most senior tranche only. The model behavior is illustrated through the empirical analysis of an actual synthetic ABS trade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In that article, the terms MBS and ABS will be used equivalently. Even if our developments are particularly relevant to pools of credit risky mortgages (subprime loans, for instance), the results can be used and adapted easily to cover other asset classes.

  2. For instance, the interest rate risk for a fixed coupon MBS is that the price drops as rates increase because of the differential between the coupon being paid in the MBS and the market rates.

  3. Except under the “infinitely” granular assumption, as in Vasicek (2002).

  4. Implicitly insured by Government Sponsored Enterprises in the USA.

  5. E.g., “Andrew Davidson & Co, Inc”.

  6. For example, the slope of the interest curve, an Home Price index, and possibly the unemployment rate, as in Patruno et al. (2006).

  7. When the sponsor liquidates the remaining collateral and pay off the notes after pool balance has dropped significantly, say to 10% of the original principal

  8. To stimulate the call option, “there is usually a significant step-up in the coupon rate in the event the call is not exercised. As a result, ABS were commonly priced assuming the call is exercised, as the option is expected to be deeply in the money at the call date. With the subprime crisis going forward, this assumption has started to be stressed, however.” (Pénasse 2008)

  9. We neglect accrued payments due to defaults between two successive dates.

  10. In practice, the underlying loans may have different origination dates for a given bond. This discrepancy is generally smaller then six months. Thus, we neglect the defaults that could occur between the loan originations and the bond origination.

  11. See Pénasse (2008), for instance.

  12. This approximation may be poor. For instance, consider the following realistic choice of parameters: T = 5 years, σ(t, T) = ν(t, T) = 50%, EL(0, T) = 30%, A(0, T) = 50%, \(\tilde \rho=50\)%. Then, the probability that EL(T, T) + A(T, T) is larger than one lies around 23%. In this case, we expect biases in the evaluation of \(E_1^*(T)\) and \(E_1^*(T,T)\), and we advise to use the formulas stated in the Appendix B instead.

  13. Under the Assumption (A), it is the case for the most senior tranche only. See the formulas in Theorem 8, or in the appendix.

  14. As a consequence, we do not cover some path-dependent features, for instance credit triggers that would change the order of priority of coupon payments among tranche, or potentially complex excess spread mechanisms.

  15. This point is a particularity of the ABS sector w.r.t. corporate-based structures. And this point is integrated in the model through the diffusion specification (EL).

  16. A PO bond can be seen as a vanilla option written on the process A.

  17. And possibly others of the same type.

References

  • Andersen, L., Piterbarg, V., & Sidenius, J. (2008). A new framework for dynamic credit portfolio loss modeling. Journal of Theoretical and Applied Finance, 11, 163–197.

    Article  Google Scholar 

  • Bennani, N. (2005). The forward loss model: A dynamic term structure approach for the pricing of portfolio credit derivatives. Royal Bank of Scotland.

  • Bielecki, T., & Rutkowski, M. (2002). Credit risk: Modeling, valuation and hedging. Springer.

  • Brigo, D., & Mercurio, F. (2001). Interest rate models. Theory and practice. Springer.

  • Boudoukh, J., Whitelaw, R. F., Richardson, M., & Stanton, R. (1997). Pricing mortgage-backed securities in a multifactor rate environment: A mutivariate density estimation approach. Review of Financial Studies, 10, 405–446.

    Article  Google Scholar 

  • Childs, P. D., Ott, S. H., & Riddiough, T. J. (1996). The pricing of multiclass commercial mortgage-backed securities. The Journal of Financial and Quantitative Analysis, 31, 581–603.

    Article  Google Scholar 

  • Collin-Dufresne, P., & Harding, J. P. (1999). A closed form formula for valuing mortgages. Journal of Real Estate Finance and Economics, 19, 133–146.

    Article  Google Scholar 

  • Deng, Y. (1997). Mortgage termination: An empirical hazard model with a stochastic term structure. The Journal of Real Estate Finance and Economics, 14, 309–331.

    Article  Google Scholar 

  • Deng, Y., Quigley, J. M., & Van Order, R. (2000). Mortgage termination, heterogeneity, and the exercise of mortgage options. Econometrica, 68, 275–307.

    Article  Google Scholar 

  • Dunn, K. B., & McConnell, J. J. (1981a). Valuation of GNMA mortgage-backed securities. Journal of Finance, 36, 599–617.

    Article  Google Scholar 

  • Dunn, K. B., & McConnell, J. J. (1981b). A comparison of alternative models for pricing GNMA mortgage-backed securities. Journal of Finance, 36, 375–392.

    Google Scholar 

  • Dunsky, R. M., & Ho, T. (2007). Valuing Fixed Rate Mortgage Loans with Default and Prepayment Options. Journal of Fixed Income, 16, 7–31.

    Article  Google Scholar 

  • Garcia, J., & Goossens, S. (2008a). One factor models for the ABS correlation market pricing TABX tranches. http://www.sergeandjoao.com/CorrelationPapers/tabxonefactor.pdf.

  • Garcia, J., & Goossens, S. (2008b). One credit event models for CDO of ABS. http://www.sergeandjoao.com/CorrelationPapers/abscdo.pdf.

  • Gautier, L. (2003). Market-Implied Losses and non-agency Subordinated MBS. Journal of Fixed Income, 13(1), 49–74.

    Article  Google Scholar 

  • Giesecke, K., Goldberg, L. R. & Ding, X. (2010). A top-down approach to multi-name credit. http://papers.ssrn.com/ id=1142152.

  • Goncharov, Y. (2005). An intensity-based approach to valuation of mortgage contracts subject to prepayment risk. International Journal of Theoretical and Applied Finance, 9(6), 889–914.

    Article  Google Scholar 

  • Kariya, T., & Kobayashi, M. (2000). Pricing mortgage backed securities (MBS). A model describing the burnout effect. Asian Pacific Financial Markets, 7, 182–204.

    Google Scholar 

  • Kariya, T., Pliska, S. R., & Ushiyama, F. (2002). A 3-factor valuation model for mortgage backed securities (MBS). Kyoto Institute of Economic Research. http://www.math.fsu.edu/~jfrade/PAPERS/MBS.pdf.

  • Kau, J. B., Keenan, D. C., Muller III, W. J., & Epperson, J. F. (1995). The valuation at origination of fixed-rate mortgages with default and prepayment. The Journal of Real Estate Finance and Economics, 11, 5–36.

    Article  Google Scholar 

  • Kau, J., Keenan D., & Smurov, A. (2006). Reduced-form mortgage pricing as an alternative to option-pricing models. The Journal of Real Estate Finance Economics, 33, 183–196.

    Article  Google Scholar 

  • Jäckel, P. (2008). Gamma loss and prepayment. Risk, 134–139. http://www.awdz65.dsl.pipex.com/TheGammaLossAndPrepaymentModel.pdf

  • Levin, A., & Davidson, A. (2008). The concept of credit OAS in valuation of MBS. Journal of Portfolio Management, 34, 41–55.

    Article  Google Scholar 

  • Lipton, A., & Rennie, A. (2007). Credit correlation: Life after copulas. World Scientific Public.

  • Lou, W. (2007). Valuation of subprime mortgage-backed securities: A portfolio credit derivatives approach. Available at http://louwujiang.com/.

  • McConnell, J. J., & Singh, M. (1993). Valuation and analysis of collateralized mortgage obligations. Management Science, 39, 692–709.

    Article  Google Scholar 

  • McConnell, J. J., & Singh, M. (1994). Rational Prepayments and the valuation of collateralized mortgage obligations. Journal of Finance, 49, 891–921.

    Article  Google Scholar 

  • Nakamura, N. (2001). Valuation of mortgage-backed securities based upon a structural approach. Asia-Pacific Financial Markets, 8, 259–289.

    Article  Google Scholar 

  • O’Kane, D. (2008). Modelling single-name and multi-name credit derivatives. Wiley.

  • Patruno, G. N., Ilinic, N., & Zhao, E. (2006). Introducing the unified Deutsche bank prepayment model. Deutsche Bank.

  • Pénasse, J. (2008). Cash flow-wise ABCDS pricing. http://mpra.ub.uni-muenchen.de/10853/.

  • Richard, F., & Roll, R. (1989). Prepayment on fixed-rate mortgage-backed securities. Journal of Portfolio Management, 15, 73–82.

    Article  Google Scholar 

  • Rom-Poulsen, N. (2007). Semi-anaytical MBS pricing. The Journal of Real Estate Finance and Economics, 34, 463–498.

    Article  Google Scholar 

  • Schönbucher, P. (2005). Portfolio losses and the term structure of loss transition rates: A new methodology for the pricing of portfolio credit derivatives. ETH, Zurich. http://www.defaultrisk.com/.

  • Schwartz, E., & Torous, W. N. (1989). Prepayment and the valuation of Mortgage-Backed-Securities. Journal of Finance, 44, 375–392.

    Article  Google Scholar 

  • Schwartz, E., & Torous, W. N. (1993). Prepayment, default, and the valuation of mortgage pass-through securities. Journal of Business, 65, 221–239.

    Google Scholar 

  • Sharp, N. J., Duck, P., & Newton, N. (2008). An improved fixed-rate mortgage valuation methodology with interacting prepayment and default options. The Journal of Real Estate Finance and Economics, 36(3), 307–342.

    Article  Google Scholar 

  • Stanton, R. (1995). Rational prepayment and the value of mortgage-backed securities. The Review of Financial Studies, 8, 677–708.

    Article  Google Scholar 

  • Vasicek, O. (2002). The distribution of portfolio loan value. Risk, 130–133.

Download references

Acknowledgements

The author thanks Bruno Bancal, Arthur Berd, Rama Cont, Youssef Elouerkhaoui, Igor Halperin, Wolfgang Kluge, Jean-Paul Laurent, Alex Lipton, Arthur Maghakian, Alex Popovici, Antoine Savine and Olivier Scaillet for helpful remarks and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-David Fermanian.

Appendices

Appendix A: Proofs Under the Assumption (A)

A.1 Proof of Theorem 1

Under the s-forward neutral probability Q s , the discount factor (B(t, s)) t,t ≤ s process is the numeraire and we have, for all the tranches except the most senior one,

$$ E_1(s)= B(t,s)E_{t,Q_s}\left[ \left( K - EL(s,s) \right)^+ \right], $$
(14)

and

$$ E_2(s,\bar s)=B(t,s) E_{t,Q_{s}}\left[ {\mathbf 1} \{ EL(s,s) \leq K \} EL(\bar s,\bar s) \right]. $$

A technical issue is coming from the fact we change one probability into another one every time. Formally, the processes (EL(t, T)) t (for different T) have not the same laws under all these probabilities. Actually, only the drifts are changing. It is possible to state explicitly all these drifts. Remind that the drift of (EL(·, T)) under the risk neutral measure Q is zero. By classical arguments (see e.g., Brigo and Mercurio 2001), we obtain: Under the Q s Forward measure, the drift of the process EL(t, T) is given by \( - \rho EL(t,T)\sigma(t,T) \left(\sigma_{Q}(t) -\bar\sigma (t,s) \right),\) where σ Q is the volatility of the usual numeraire. Since this usual numeraire is the money market account, it has no volatility. Thus, σ Q (t) = 0 and, for every t, T, the latter drift is

$$ EL(t,T)\nu_{t,T,Q_{s}}= \rho EL(t,T)\sigma(t,T) \bar\sigma (t,s). $$
(15)

Therefore, under any Forward neutral probability Q s , the Expected Loss processes are still lognormal: \(EL(dt,T)=EL(t,T). \left( \nu_{t,T,Q_s} dt + \sigma(t,T) dW_t \right)\).

To evaluate the expectation (Eq. 14), we can invoke the usual Black-Scholes formula:

$$\begin{array}{rll} E_1(s) &=& B(t,s)E_{t,Q_s}\left[ \left( K - EL(s,s) \right)^+ \right] \\ &=& B(t,s)E_{t,Q_s}\left[ \left( K - EL(t,s)\exp\left(\int_t^s \nu_{u,s,Q_s} \, du \right.\right.\right.\\ && \left.\left.\left.-\int_t^s \sigma^2(u,s)\, du/2 + \int_t^s \sigma(u,s) dW_u \right) \right)^+ \right] \\ &=& B(t,s)\exp\left(\int_t^s \nu_{u,s,Q_s} \, du\right) \\ && \cdot E_{t,Q_s}\left[\! \left(\! K_s^* - EL(t,s)\exp\left(\! -\! \int_t^s \sigma^2(u,s)\, ds/2 +\! \int_t^s \! \sigma(u,s) dW_u\! \right) \right)^+ \right]. \end{array}$$

So, we prove the formula for E 1(s). To deal with \(E_2(s,\bar s)\), choose now the numeraire \(EL(\cdot,\bar s)\). Under the probability \(Q_{\bar s}^E\) that is induced by this new numeraire,

$$ E_2(s,\bar s)=B(t,s) E_{t,Q_s}[EL(\bar s,\bar s)].E_{t,Q_{\bar s}^E}\left[ {\mathbf 1} \{ EL(s,s) \leq K \} \right], $$

or equivalently

$$ E_2(s,\bar s)=B(t,s) EL(t,\bar s) \exp\left(\int_t^{\bar s} \nu_{u,\bar s,Q_{s}} \, du\right).E_{t,Q_{\bar s}^E}\left[ {\mathbf 1} \{ EL(s,s) \leq K \} \right]. $$

But, under the probability \(Q_{\bar s}^E\), the Expected Loss processes EL(·, s) follows the diffusion equation

$$ EL(dt,s)=EL(t,s). \left( \sigma(t,s)\sigma(t,\bar s) dt + \sigma(t,s) dW_t \right). \nonumber $$

Then, we obtain an explicit expression for \(E_2(s,\bar s)\).

A.2 Proof of Theorem 2

Under (A), we have

$$\begin{array}{rll} E_1^*(s) &=& B(t,s)E_{t,Q_s}\left[ 1- EL(s,s) - A(s,s) \right], \;\mbox{\rm and} \\ E_2^*(s,\bar s) &=& B(t,s)E_{t,Q_{s}}\left[ EL(\bar s,\bar s) \right]. \end{array}$$

By our change of measure, the processes (EL(t, T)) and (A(t, T)) are no more martingales under the new measures. Concerning the Expected Loss process, we had already found the Q s -drift change (see Eq. 15). This implies

$$\begin{array}{rll} E_{t,Q_s}[EL(\bar s,\bar s)] &=& EL(t,\bar s) \exp\left( \int_t^{\bar s} \nu_{u,\bar s,Q_s} \, du \right)\\ &=& EL(t,\bar s) \exp\left( \rho\int_t^{\bar s} \sigma(u,\bar s) \bar\sigma(u,s) \, du \right). \end{array}$$

Similarly, we can deal with the amortization process A(., s) as with the Expected Loss process. Therefore, we have

$$ E_{t,Q_{s}}\left[ A(s,s) \right]=A(t,s) \exp\left( \tilde{\rho}\int_t^s \tau(u,s) \bar\sigma(u,s) \, du \right),$$

so the result.

A.3 Proof of Theorem 5

Under the Q s Forward measure, the drift of the process \(EL(t,\bar s)\) is given by \(\nu_{t,\bar s,Q_s}\), with our previous notations. By some standard conditional expectation arguments, we have

$$\begin{array}{rll} F_2(s,\bar s) &=& E_t\left[ \exp\left( -\int_t^{\bar s} r_u \, du \right) B(\bar s,s) L(\bar s,s)\Delta(\bar s,s) O_K(\bar s) \right] \\ & =& E_{t}\left[ \exp\left( -\int_t^{\bar s} r_u \, du \right) B(\bar s,s) \left\{ \frac{1}{B(\bar s,s)} -1 \right\} O_K(\bar s) \right] \\ & =& E_{t}\left[ \exp\left( -\int_t^{\bar s} r_u \, du \right) \left\{ 1- B(\bar s,s)\right\} O_K(\bar s) \right] \\ &=& F_{1,1}(\bar s,\bar s) - E_{t}\left[ \exp\left( -\int_t^{\bar s} r_u \, du \right) E_{\bar s}\left[ \exp( -\int_{\bar s}^{ s} r_u \, du )\right] O_K(\bar s) \right] \\ &=& F_{1,1}(\bar s,\bar s) - F_{1,1}(s,\bar s). \; \end{array}$$

Appendix B: Semi-Analytical Formulas Without the Assumption (A)

In this appendix, we extend our formulas to remove the convenient previous Assumption (A). Now, the amortization process can reduce any tranche, possibly the most senior one. Closed-form formulas are no longer available, but we can rely on semi-analytical formulas instead. Broadly speaking, the method is simple: conditionally on the value of the amortization process at some time horizon, the “base case” formulas apply, by shifting the relevant strikes. Then, an integration w.r.t. the law of the expected amortized amounts provide the results.

First, let us consider the previous synthetic structure and the evaluation of risky principals and default legs of all tranches (including the most senior one). Recall that the risky principals of the equity tranche [0, K] are defined by \(RP_{t,K}=E_t\left[ \int_t^{T^\ast} \exp\left( - \int_t^s r_u \, du \right) O_{K}(s) \, ds \right]\), and its default legs are

$$ DL_{t,K} = E_t\left[ \int_t^{T^\ast} \exp\left( - \int_t^s r_u \, du \right) {\mathbf 1}(L(s)+A_K(s) \leq K) L(ds) \right]. $$

As previously, we cover the case of sequential-pay bonds, for which \(A_K(s) = [A(s) - (1-K)]^+\). But it should be noted that we deal with the case of pro-rata bonds too, for which A K (s) is a fixed proportion of A(s), as in some stripped pass-through securities. To include these two reference situations explicitly,Footnote 17 we assume the repaid principal of the tranche [0, K] at time s is a deterministic function of the portfolio repaid principal A(s) only: for every K and s, there exists a function ψ K such that

$$A_K(s):= \psi_{K}(A(s))=\psi_{K}(A(s,s)).$$

To price the tranche [0, K], it is sufficient to evaluate all quantities like

$$ {\mathcal E}_1(s)= E_t\left[ \exp\left( - \int_t^s r_u \, du \right) \left( K - EL(s,s) - \psi_{K}(A(s,s)) \right)^+ \right], $$

and

$$ {\mathcal E}_2(s,\bar s)=E_t\left[ \exp\left( - \int_t^{s} r_u \, du \right) {\mathbf 1}\{EL(s,s)+ \psi_{K}(A(s,s)) \leq K\} EL(\bar s,\bar s)\right], $$

for every couple \((s,\bar s)\), \(t\leq \bar s \leq s \leq T^\ast\). Actually, we will calculate first the quantity

$$ {\mathcal F}_1(s,\bar s)= E_t\left[ \exp\left( - \int_t^s r_u \, du \right) \left( K - EL(\bar s,\bar s) - \psi_{K}(A(\bar s,\bar s)) \right)^+ \right], $$

when \(\bar s \leq s\). Indeed, note that \({\mathcal E}_1(s) = {\mathcal F}_1(s,s)\). Moreover, \({\mathcal F}_1\) is the same as the so-called term F 1 that had been calculated in Section “Pricing of a Cash MBS/ABS Tranche” under the Assumption (A). We will need \({\mathcal F}_1\) for pricing coupon-bearing securities hereafter.

To fix the ideas, at time t, the event \(A(\bar s,\bar s)=a\) will be identical to \(\int_t^{\bar s} \tau(u,\bar s)\,d\tilde W_u = w(a)\), for some value w(a) that will depend on the spot curve A(t, ·). Clearly,

$$\begin{array}{rll}{\mathcal F}_1(s,\bar s) &=& B(t,s) E_{t,Q_s}\left[ \left( K - EL(\bar s,\bar s) - \psi_{K}(A(\bar s,\bar s)) \right)^+ \right] \\ &=& B(t,s) E_{t,Q_s}\left[ E_{t,Q_s}[ \left( K - EL(\bar s,\bar s) - \psi_{K}(a) \right)^+ | A(\bar s,\bar s)=a] \right], \end{array}$$

and the conditional expectation can be evaluated easily. Here, the conditioning event is

$$ a = A(t,\bar s)\exp \left( \tilde{\rho}\int_t^{\bar s} \bar \sigma(u,s)\tau(u,\bar s)\, du - \frac{1}{2}\int_t^{\bar s} \tau^2(u,\bar s)\, du + \int_t^{\bar s} \tau(u,\bar s)\, d\tilde W_u \right), $$

or equivalently

$$ \int_t^{\bar s} \tau(u,\bar s)\, d\tilde W_u = w(a).$$

But we can break down

$$ \int_t^{\bar s} \sigma(u,\bar s)\, d W_u = \xi_{\bar s} \int_t^{\bar s} \tau(u,\bar s)\, d\tilde W_u + \varepsilon,$$

where

$$ \xi_{\bar s} = \frac{\rho \tilde{\rho} \int_t^{\bar s} \sigma(u,\bar s)\tau(u,\bar s)\, du }{\int_t^{\bar s} \tau^2(u,\bar s)\, du}, $$
(16)

and \(\varepsilon \sim {\mathcal N}(0,\mu_{\bar s}^2)\), by setting

$$ \mu_{\bar s}^2 = \int_t^{\bar s} \sigma^2(u,\bar s)\, du - \xi_{\bar s}^2 \int_t^{\bar s} \tau^2(u,\bar s)\, du. $$
(17)

Implicitly, note that the variance of ε depends on all the underlying volatility functions and arguments. Then, under Q s and conditionally on \(A(\bar s,\bar s)=a\), the random variable \(EL(\bar s,\bar s)\) can be written

$$\begin{array}{rll} EL(\bar s,\bar s) &=& EL(t,\bar s)\exp \left( \int_t^{\bar s} \rho\sigma(u,\bar s)\bar\sigma(u,s)\, du \right.\\ &&\left.- \frac{1}{2}\int_t^{\bar s} \sigma^2(u,\bar s)\, du + \xi_{\bar s} w(a) + \varepsilon \right), \end{array}$$

and

$$\begin{array}{lll} &&E_{Q_s}[\left( K - EL(\bar s,\bar s) - \psi_K(a) \right)^+ ] \\ &&\quad=Put\left( EL(t,\bar s)\exp \left( \int_t^{\bar s} \rho\sigma(u,\bar s)\bar\sigma(u,s)\, du\right.\right.\\ &&\quad\quad\;\left.- \ \frac{1}{2}\int_t^{\bar s} \sigma^2(u,\bar s)\, du + \xi_{\bar s} w(a) + \frac{1}{2}\mu_{\bar s}^2 \right), \\ &&\quad\quad \left. K-\psi_K(a),\mu_{\bar s},\bar s-t\right) \cdot {\mathbf 1} ( K \geq \psi_K(a) ). \end{array}$$

It is sufficient to integrate the latter formula w.r.t. the r.v. \(\int_t^{\bar s} \tau(u,\bar s)\, d\bar W_u\) to prove the result.

Theorem 7

Under (E), (IR) and (AM),

$$\begin{array}{rll} {\mathcal F}_1(s,\bar s) &=& B(t,s) \int Put\left(EL_w, K-\psi_K(a_1(w)),\mu_{\bar s},\bar s-t\right) \phi\left(\frac{w}{(\int_t^{\bar s} \tau^2(u,\bar s)\,du)^{1/2}}\right)\\ &&\cdot \frac{{\mathbf 1} ( K \geq \psi_K(a_1(w)) )}{(\int_t^{\bar s} \tau^2(u,\bar s)\,du)^{1/2}}dw, \end{array}$$

where

$$ EL_w := EL(t,\bar s)\exp \left( \int_t^{\bar s}\! \rho\sigma(u,\bar s)\bar\sigma(u,s)\, du - \frac{1}{2}\int_t^{\bar s}\! \sigma^2(u,\bar s)\, du + \xi_{\bar s} w + \frac{1}{2}\mu_{\bar s}^2 \right). $$

Moreover \(\xi_{\bar s}\) (resp. \(\mu_{\bar s}\) ) is given by Eq.  16 (resp. (Eq.  17 )) and

$$ a_1(w) := A(t,\bar s)\exp \left( \tilde{\rho}\int_t^{\bar s} \sigma(u,\bar s)\tau(u,s)\, du - \frac{1}{2}\int_t^{\bar s} \tau^2(u,\bar s)\, du+w\right).$$

Similarly and by leading the same changes of numeraire as in Theorem 1, we obtain

$$\begin{array}{rll}{\mathcal E}_2(s,\bar s)&=&B(t,s) EL(t,\bar s) \exp\left(\int_t^{\bar s} \nu_{u,\bar s,Q_{s}} \, du\right)\\ &&.E_{t,Q_{\bar s}^E}\left[ {\mathbf 1} \{ EL(s,s)+\psi_K(A(s,s)) \leq K \} \right] \\ &=& B(t,s) EL(t,\bar s) \exp\left(\int_t^{\bar s} \nu_{u,\bar s,Q_{s}} \, du\right) \\ && \cdot E_{t,Q_{\bar s}^E}\left[ E_{t,Q_{\bar s}^E}\left[{\mathbf 1} \{ EL(s,s)+\psi_K(a_2(w)) \leq K \} | \int_t^s \tau(u,s)\,d\tilde W_u = w\right]\right] \end{array}$$

where

$$ a_2(w) = A(t,s)\exp \left( \rho\tilde{\rho}\int_t^{\bar s} \sigma(u,\bar s)\tau(u,s)\, du - \frac{1}{2}\int_t^s \tau^2(u,s)\, du+w\right). $$
(18)

Note that the latter function is slightly different from the previous one a 1(w). Indeed, under \(Q_{\bar s}^E\), the instantaneous drift of A(t, s) is now proportional to \(\rho\tilde{\rho}\sigma(t,\bar s)\tau(t,s)\). We deduce

$$\begin{array}{lll} &&E_{t,Q_{\bar s}^E}\left[{\mathbf 1} \{ EL(s,s)+\psi_K(a_2(w))\leq K \}| A(s,s)= a_2(w) \right] \\ &&\quad={\mathbf 1}(K\geq \psi_K(a_2(w))). \Phi\left( \{ \ln( K - \psi_K(a_2(w))) \right. \\ &&\quad\quad\;\;\left. -\ln EL(t,s) - \int_t^{\bar s} \sigma(u,s)\sigma(u,\bar s)\, du + \frac{1}{2} \int_t^s \sigma^2(u,s)\, du - \xi_s w \}/\mu_s \right), \end{array}$$

where ξ s and \(\mu_s^2\) have been defined above.

Theorem 8

Under (E), (IR) and (AM), we have

$$\begin{array}{lll} &&{\mathcal E}_2(s,\bar s) = B(t,s) EL(t,\bar s) \exp\left(\int_t^{\bar s} \nu_{u,\bar s,Q_{s}} \, du\right) \\ &&\quad \cdot \int \Phi\left(\frac{1}{\mu_s} \{ \ln( K -\psi_K(a_2(w))) - \ln EL(t,s) - \int_t^s \sigma(u,s)\sigma(u,\bar s)\, du \right. \\ &&\quad \left. +\frac{1}{2} \int_t^s\! \sigma^2(u,s)\, du - \xi_s w \} \!\right) \cdot \phi\left(\!\frac{w}{(\int_t^s \tau^2(u,s)\,du)^{1/2}}\!\right) \frac{{\mathbf 1}(K\geq \psi_K(a_2(w)))dw}{(\int_t^s \tau^2(u,s)\,du)^{1/2}}, \end{array}$$

where a 2 , ξ . and μ . are defined by the identities  18 16 and  17 respectively.

Corollary 1

Let us consider a base tranche [0, K], K ∈ [0, 1], of a synthetic ABS structure. Under the assumptions of Theorems 7 and 8, its risky principal is \(RP_{t,K}= \int_t^{T^\ast} {\mathcal F}_1(s,s) \, ds\) , and its default leg is \(DL_{t,K}\simeq \sum_{i=1}^p \left[ {\mathcal E}_2\right.\!(T_i,T_i) - {\mathcal E}_2\left.\!(T_i,T_{i-1})\right]\).

To extend fully the results of the previous sections, it remains to tackle the case of cash structures. The next to last missing building block (to deal floating rate coupons) is

$$ {\mathcal F}_2(s,\bar s) = E_t\left[ \exp\left( -\int_t^{s} r_u \, du \right) L(\bar s,s)O_K(\bar s) \right], $$

But, invoking the same arguments as in the proof of Theorem 5, we obtain easily

$$ {\mathcal F}_2(s,\bar s) = B(t,\bar s) E_{t,Q_{\bar s}}\left[ O_K(\bar s) \right] - B(t,s) E_{t,Q_{ s}}\left[ O_K(\bar s) \right] = {\mathcal F}_1(\bar s,\bar s) - {\mathcal F}_1(s,\bar s) ,$$

and it is a known quantity. Thus, to evaluate principal paydowns in this case, the two last missing building blocks are the evaluation of

$$ {\mathcal A}_1(s,\bar s)=E_t\left[ \exp\left( - \int_t^{s} r_u \, du \right) {\mathbf 1}\{EL(\bar s,\bar s)+\psi_K(A(\bar s,\bar s)) \leq K\} A_K( s,s)\right], $$

and

$$ {\mathcal A}_2(s,\bar s)=E_t\left[ \exp\left( - \int_t^{s} r_u \, du \right) {\mathbf 1}\{EL(\bar s,\bar s)+\psi_K(A(\bar s,\bar s)) \leq K\} A_K( \bar s,\bar s)\right], $$

for every couples \((s,\bar s)\), \(t\leq \bar s \leq s \leq T^\ast\). After some tedious calculations, it can be proved that:

Theorem 9

Under (E), (IR) and (AM), we have

$$\begin{array}{rll} {\mathcal A}_1(s,\bar s) &=& B(t,s) \int \Phi\left(\frac{1}{\mu_{{\mathcal A}_1}} \left\{ \ln( K - \psi_K(a_3(w))) - \ln EL(t,\bar s) \right.\right.\\ &&\qquad\qquad\quad\; \left.\left. - \int_t^{\bar s}\!\! \rho \sigma(u,\bar s)\bar\sigma(u, s)\, du \!+\! \frac{1}{2} \int_t^{\bar s}\!\! \sigma^2(u,\bar s)\, du \!-\! \xi_3 w \!-\! \xi_4 \tilde w \right\} \right) \\ && \cdot \phi_{\rho^\ast}\left(\frac{w}{v_{\bar s}},\frac{\tilde w}{v_{s}}\right) \cdot \psi_K(a_4(\tilde w)) \frac{{\mathbf 1}(K\geq \psi_K(a_3(w)) ) }{v_s v_{\bar s}}\,dw\, d\tilde w , \end{array}$$

where \(\phi_{\rho^\ast}\) denotes the density of a bivariate random vector of standard Gaussian r.v. with correlation parameter ρ , and where we have set

$$\begin{array}{rll} \xi_3 &:=& \rho\tilde{\rho}\frac{\int_t^{\bar s} \sigma(.,\bar s)\tau(.,\bar s).\int_t^s \tau^2(.,s)- \int_t^{\bar s}\sigma(.,\bar s)\tau(.,s).\int_t^{\bar s} \tau(.,s)\tau(.,\bar s)}{\int_t^{\bar s}\tau^2(.,\bar s) .\int_t^s\tau^2(.,s) - \left(\int_t^{\bar s}\tau(.,s)\tau(.,\bar s)\right)^2 },\\ \xi_4&:=& \rho\tilde{\rho}\frac{\int_t^{\bar s} \sigma(.,\bar s)\tau(.,s).\int_t^{\bar s} \tau^2(.,\bar s)- \int_t^{\bar s}\sigma(.,\bar s)\tau(.,\bar s).\int_t^{\bar s} \tau(.,s)\tau(.,\bar s)}{\int_t^{\bar s}\tau^2(.,\bar s) .\int_t^s\tau^2(.,s) - \left(\int_t^{\bar s}\tau(.,s)\tau(.,\bar s)\right)^2 }, \\ \mu_{{\mathcal A}_1}^2 &:=& \int_t^{\bar s} \sigma^2(.,\bar s) - \xi_3^2 \int_t^{\bar s} \tau^2(.,\bar s) - \xi_4^2\int_t^s \tau^2(.,s) -2\xi_3\xi_4 \int_t^{\bar s}\tau(.,s)\tau(.,\bar s),\\ a_3(w) &:=& A(t,\bar s)\exp \left( \tilde{\rho}\int_t^{\bar s} \tau(u,\bar s)\bar\sigma(u,s)\, du - \frac{1}{2}\int_t^{\bar s} \tau^2(u,\bar s)\, du+w\right),\\ a_4(\tilde w) &:=& A(t,s)\exp \left( \tilde{\rho}\int_t^{s} \tau(u,s)\bar\sigma(u,s)\, du - \frac{1}{2}\int_t^{s} \tau^2(u,s)\, du+\tilde w\right),\\ v_s^2 &:=& \int_t^s \tau^2(u,s)\,du, \;\;\; \rho^\ast := \frac{\int_t^{\bar s} \tau(.,s)\tau(.,\bar s)}{\left(\int_t^s \tau^2(.,s).\int_t^{\bar s} \tau^2(.,\bar s) \right)^{1/2} }\cdot\end{array}$$

Note that the previous term \({\mathcal A}_1\) involves a two-dimensional integration. At the opposite, the term \({\mathcal A}_2(s,\bar s)\) is simpler and similar to \({\mathcal E}_2\). We prove easily

Theorem 10

Under (E), (IR) and (AM), we have

$$\begin{array}{rll} {\mathcal A}_2(s,\bar s) &=& B(t,s) \int \Phi\left(\frac{1}{\mu_{{\mathcal A}_2}} \left\{ \ln( K - \psi_K(a_5(w))) - \ln EL(t,\bar s) \right.\right. \\ &&\qquad\qquad\quad\; \left. \left. - \int_t^{\bar s} \rho \sigma(u,\bar s)\bar\sigma(u, s)\, du + \frac{1}{2} \int_t^{\bar s} \sigma^2(u,\bar s)\, du - \xi_{\bar s} w \right\} \right) \\ && \cdot \ \phi\left(\frac{w}{v_{\bar s}}\right) \cdot \psi_K(a_5( w)) \frac{{\mathbf 1}(K\geq \psi_K(a_5(w)))}{v_{\bar s}}\,dw , \end{array}$$

where

$$\mu_{{\mathcal A}_2}^2 = \int_t^{\bar s} \sigma^2(.,\bar s) - \xi_{\bar s}^2 \int_t^{\bar s} \tau^2(.,\bar s),$$

and

$$a_5(w) = A(t,\bar s)\exp \left( \tilde{\rho}\int_t^{\bar s} \bar \sigma(.,s)\tau(.,\bar s) - \frac{1}{2}\int_t^{\bar s} \tau^2(.,\bar s)+w\right).$$

Thus, the previous theorems allow us to evaluate cash structures, as described in Section “Pricing of a Cash MBS/ABS Tranche”.

Corollary 2

Under the Assumptions (E), (IR), (AM) and (FC) and with our previous notations, the cash bond price of Section “ Pricing of a Cash MBS/ABS Tranche ” is

$$ P_t = \sum\limits_{i,T_i \geq t} \left\{ C_{0} \Delta_i {\mathcal F}_1(T_i,T_{i-1}) + {\mathcal A}_1(T_i,T_{i-1}) - {\mathcal A}_2(T_i,T_{i-1}) \right\} + {\mathcal E}_1(T_p). $$

Under the Assumptions (E), (IR), (AM) and (FlC), the related cash bond price is

$$ P_t = \sum\limits_{i,T_i \geq t} \left\{ \Delta_i {\mathcal F}_2(T_i,T_{i-1}) + {\mathcal A}_1(T_i,T_{i-1}) - {\mathcal A}_2(T_i,T_{i-1}) \right\}+ {\mathcal E}_1(T_p) . $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fermanian, JD. A Top-Down Approach for Asset-Backed Securities: A Consistent Way of Managing Prepayment, Default and Interest Rate Risks. J Real Estate Finan Econ 46, 480–515 (2013). https://doi.org/10.1007/s11146-011-9331-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11146-011-9331-2

Keywords

Navigation