Skip to main content
Log in

Preferential CO oxidation in hydrogen-rich gases over Ag catalysts supported on different supports

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The monometallic silver supported on SiO2, Al2O3, ZSM-5 (Si:Al = 100) and bi-metallic AgCe/SiO2 samples were studied in the reaction of the preferential CO oxidation. It was established that the supported silver catalysts are promising systems for selective oxidation of CO at low temperatures and the addition of cerium oxide increases the catalytic activity and selectivity most probably because of the increase in the silver dispersion; the homogeneous distribution of Ag and ceria on the silica support; formation of Agnδ+ clusters; increase in bulk and subsurface oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zlotea C, Provost K, Morfin F, Piccolo L (2018) Role of hydrogen absorption in supported Pd nanocatalysts during CO-PROX: Insights from operando X-ray absorption spectroscopy. Appl Catal B Envir 237:1059–1065

    Article  CAS  Google Scholar 

  2. Snytnikov PV, Sobyanin VA, Belyaev VD, Tsyrulnikov PG, Shitova NB, Shlyapin DA (2003) Selective oxidation of carbon monoxide in excess hydrogen over Pt- Ru-and Pd-supported catalysts. Appl Catal A General 239:149–156

    Article  CAS  Google Scholar 

  3. İnce T, Uysal Akin GAN, Yildirim R (2005) Selective low-temperature CO oxidation over Pt-Co-Ce/Al2O3 in hydrogen-rich streams. Appl Catal A General 292:171–176

    Article  CAS  Google Scholar 

  4. Liu RH, Gao NS, Zhen F, Zhang YY, Mei L, Zeng XW (2013) Doping effect of Al2O3 and CeO2 on Fe2O3 support for gold catalyst in CO oxidation at low-temperature. Chem Eng J 225:245–253

    Article  CAS  Google Scholar 

  5. Wang FG, Zhao KF, Zhang HJ, Dong YM, Wang T, He DN (2014) Low temperature CO catalytic oxidation over supported Pd–Cu catalysts calcined at different temperatures. Chem Eng J 242:10–18

    Article  CAS  Google Scholar 

  6. Zhang R, Miller JT, Baertsch CD (2012) Identifying the active redox oxygen sites in a mixed Cu and Ce oxide catalyst by in situ X-ray absorption spectroscopy and anaerobic reactions with CO in concentrated H2. J Catal 294:69–78

    Article  CAS  Google Scholar 

  7. Cwele T, Mahadevaiah N, Singh S, Friedrich HB, Yadav AK, Jha SN, Bhattacharyya D, Sahoo NK (2016) CO oxidation activity enhancement of Ce0.95Cu0.05O2-δ induced by Pd co-substitution. Catal Sci Technol 6:8104–8116

    Article  CAS  Google Scholar 

  8. Igarashi H, Uchida H, Suzuki M, Sasaki Y, Watanabe M (1997) Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite. Appl Catal A General 159:159–169

    Article  CAS  Google Scholar 

  9. Kahlich MJ, Gasteiger HA, Behm RJ (1997) Kinetics of the selective CO oxidation in H2-rich gas on Pt/Al2O3. J Catal 171:93–105

    Article  CAS  Google Scholar 

  10. Korotkikh O, Farrauto R (2000) Selective catalytic oxidation of CO in H2: fuel cell applications. Catal Today 62:249–254

    Article  CAS  Google Scholar 

  11. Kahlich MJ, Gasteiger HA, Behm RJ (1999) Kinetics of the selective low-temperature oxidation of CO in H2-rich gas over Au/α-Fe2O3. J Catal 182:430–440

    Article  CAS  Google Scholar 

  12. Kandoi S, Gokhale AA, Grabow LC, Dumesic JA, Mavrikakis M (2004) Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature. Catal Lett. 93:93–100

    Article  CAS  Google Scholar 

  13. Avgouropoulos G, Manzoli M, Boccuzzi F, Tabakova T, Papavasiliou J, Ioannides T, Idakiev V (2008) Catalytic performance and characterization of Au/doped-ceria catalysts for the preferential CO oxidation reaction. J Catal 256:237–247

    Article  CAS  Google Scholar 

  14. Luengnaruemitchai A, Thoa DTK, Osuwan S, Gulari E (2005) A comparative study of Au/MnOx and Au/FeOx catalysts for the catalytic oxidation of CO in hydrogen rich stream. Int J Hydrogen Energy 30:981–987

    Article  CAS  Google Scholar 

  15. Schubert M, Kahlich M, Gasteiger H, Behm R (1999) Correlation between CO surface coverage and selectivity/kinetics for the preferential CO oxidation over Pt/γ-Al2O3 and Au/α-Fe2O3: an in-situ DRIFTS study. J Power Sources 84:175–182

    Article  CAS  Google Scholar 

  16. Avgouropoulos G, Ioannides Th, Matralis HK, Batista J, St Hocevar (2001) CuO–CeO2 mixed oxide catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catal Lett 73:33–40

    Article  CAS  Google Scholar 

  17. Peng PY, Jin I, Yang TCK, Huang CM (2014) Facile preparation of hierarchical CuO–CeO2/Ni metal foam composite for preferential oxidation of CO in hydrogen-rich gas. Chem Eng J 251:228–235

    Article  CAS  Google Scholar 

  18. Morettia E, Storaroa L, Talona A, Lenarda M, Riello P, Frattini R, Martínez de Yusoc MV, Jiménez-Lópezc A, Enrique Rodríguez-Castellónc F, Ternero A, Caballero A, Holgado JP (2011) Effect of thermal treatments on the catalytic behaviour in the CO preferential oxidation of a CuO–CeO2–ZrO2 catalyst with a flower-like morphology. Appl Catal B: Env 102:627–637

    Article  CAS  Google Scholar 

  19. Marin F, Descorme C, Duprez D (2005) Supported base metal catalysts for the preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX) Appl. Catal B: Env 58:175–183

    Article  CAS  Google Scholar 

  20. Martínez-Arias A, Hungría AB, Munuera G, Gamarra D (2006) Preferential oxidation of CO in rich H2 over CuO/CeO2: details of selectivity and deactivation under the reactant stream. Appl Catal B: Environ 65:207–216

    Article  CAS  Google Scholar 

  21. Avgouropoulos G, Papavasiliou J, Tabakova T, Idakiev V, Ioannides T (2006) A comparative study of ceria-supported gold and copper oxide catalysts for preferential CO oxidation reaction. Chem Eng J 124:41–45

    Article  CAS  Google Scholar 

  22. Imamura S, Yamada H, Utani, (2000) K, Combustion activity of Ag/CeO2 composite catalyst. Appl Catal A: General 192:221–226

    Article  CAS  Google Scholar 

  23. Song K, Kang S, Kim SD (1997) Preparation and characterization of Ag/MnO x/perovskite catalysts for CO oxidation. Catal Lett 49:65–68

    Article  CAS  Google Scholar 

  24. Qu Z, Zhou S, Wu W, Li C, Bao X (2005) CO adsorption and correlation between CO surface coverage and activity/selectivity of preferential CO oxidation over supported Ag catalyst: an in situ FTIR study. Catal Lett 101:21–26

    Article  CAS  Google Scholar 

  25. Qu Z, Huang W, Cheng M, Bao X (2005) Restructuring and redispersion of silver on SiO2 under oxidizing/reducing atmospheres and its activity toward CO oxidation. J Phys Chem B 109(33):15842–15848

    Article  CAS  PubMed  Google Scholar 

  26. Qu Z, Cheng M, Shi C, Bao X (2005) Influence of pretreatment on the interaction of oxygen with silver and the catalytic activity of Ag/SiO2 catalysts for CO selective oxidation in H2. J Nat Gas Chem 14(1):4–12

    CAS  Google Scholar 

  27. Chen L, Ma D, Li X, Bao X (2006) Silver catalysts supported over activated carbons for the selective oxidation of CO in excess hydrogen: effects of different treatments on the supports. Catal Lett 111:133–139

    Article  CAS  Google Scholar 

  28. Güldür G, Balikçi F (2002) Selective carbon monoxide oxidation over Ag-based composite oxides. Int J Hydrogen Energy 27:219–224

    Article  Google Scholar 

  29. Derekaya FB, Güldür G (2010) Activity and selectivity of CO oxidation in H2 rich stream over the Ag/Co/Ce mixed oxide catalysts. Int J Hydrogen Energy 35:2247–2261

    Article  CAS  Google Scholar 

  30. Qu Z, Cheng M, Huang W, Bao X (2005) Formation of subsurface oxygen species and its high activity toward CO oxidation over silver catalysts. J Catal 229:446–458

    Article  CAS  Google Scholar 

  31. Qu Z, Cheng M, Shi C, Bao X (2005) Low-temperature selective oxidation of CO in H2-rich gases over Ag/SiO2 catalysts. J Mol Catal A Chem 239:22–31

    Article  CAS  Google Scholar 

  32. Zhang X, Dong H, Gu Z, Wang G, Zuo Y, Wang Y, Cui L (2015) Preferential carbon monoxide oxidation on Ag/Al-SBA-15 catalysts: effect of the Si/Al ratio. Chem Eng J 269:94–104

    Article  CAS  Google Scholar 

  33. Hu R, Yan C, Xie L, Yi C, Wang D (2011) Selective oxidation of CO in rich hydrogen stream over Ag/OMS-2 catalyst. Int J Hydrogen Energy 36:64–71

    Article  CAS  Google Scholar 

  34. Imamura S, Yamada H, Utani K (2000) Combustion activity of Ag/CeO2 composite catalyst. Appl Catal A General 192:221–226

    Article  CAS  Google Scholar 

  35. Todorova S, Kolev HG, Shopska MG, Kadinov GB, Holgado JP, Caballero JP (2018) A Silver-based catalysts for preferential CO oxidation in hydrogen-rich gases (PROX). Bulg Chem Comm 50:17–23

    Google Scholar 

  36. Shirley D (1972) High-Resolution X-Ray photoemission spectrum of the valence bands of gold. Phys Rev B 5:4709–4714

    Article  Google Scholar 

  37. Scofield JH (1976) Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenom 8:129–137

    Article  CAS  Google Scholar 

  38. Mamontov GV, Izaak TI, Magaev OV, Knyazev AS, Vodyankina OV (2011) Reversible oxidation/reduction of silver supported on silica aerogel: influence of the addition of phosphate Russ. J Phys Chem A 85(9):1540–1545

    CAS  Google Scholar 

  39. Bethke KA, King HH (1997) Supported Ag catalysts for the lean reduction of NO with C3H6. J Catal 172:9102

    Article  Google Scholar 

  40. Furusawa T, Seshan K, Lercher J, Lefferts L, Aika K (2002) Selective reduction of NO to N2 in the presence of oxygen over supported silver catalysts. Appl Catal B Environ 37:205–216

    Article  CAS  Google Scholar 

  41. Bartolomeu R, Mendes AN, Fernandes A, Henriques C, da Costa P, Ribeiro MF (2016) NOx SCR with decane using Ag–MFI catalysts: on the effect of silver content and co-cation presence. Catal Sci Technol 6:3038–3048

    Article  CAS  Google Scholar 

  42. Shibata J, Shimizua K, Takadaa Y, Shichia A, Yoshida H, Satokawa S, Satsuma A, Hattori T (2004) Structure of active Ag clusters in Ag zeolites for SCR of NO by propane in the presence of hydrogen. J Catal 227:367–374

    Article  CAS  Google Scholar 

  43. Grabchenko MV, Mamontov VI, Zaikovskii GV, La Parola V, Liotta LF, Vodyankina OV (2020) Appl. Catal. B Environ 260:118148

    Article  CAS  Google Scholar 

  44. Liang Q, Wu X, Weng D, Xu H (2008) Oxygen activation on Cu/Mn–Ce mixed oxides and the role in diesel soot oxidation. Catal Today 139:113–118

    Article  CAS  Google Scholar 

  45. Fino D, Specchia V (2004) Compositional and structural optimal design of a nanostructured diesel-soot combustion catalyst for a fast-regenerating trap Chem Eng. Sci 59:4825–4831

    CAS  Google Scholar 

  46. Yao HC, Yao YFY (1984) Ceria in automotive exhaust catalysts: I. Oxygen storage J Catal 86:254–258

    CAS  Google Scholar 

  47. Moulder F, Sticke WF, Sobol PE, Bombel KD (1992) Handbook of x-ray photoelectron spectroscopy (2nd edition). (J. Castain, Ed.) Perkin-Elmer Corporation, Physical Electron Division, Minnesota, USA.

  48. Wagner CD (1975) Chemical shifts of Auger lines, and the Auger parameter. Faraday Discuss Chem Soc 60:291–300

    Article  Google Scholar 

  49. Atanasova G, Guergova D, Stoychev D, Naydenov A, Stefanov P (2010) Preparation and characterization of catalytic thin films for exhaust emission control. Reac Kinet Mech Cat 101:397–406

    Article  CAS  Google Scholar 

  50. Naydenov A, Konova P, Nikolov P, Klingstedt F, Kumar N, Kovacheva D, Stefanov P, Stoyanova R, Mehandjiev D (2008) Decomposition of ozone on Ag/SiO2 catalyst for abatement of waste gases emissions. Catal Today 137:471–474

    Article  CAS  Google Scholar 

  51. Abou-Kais A, Jarjoui M, Vedrine JC, Gravelle PC (1977) Electron paramagnetic resonance (EPR) investigations on silica-supported silver catalysts and adsorbed oxygen species. J Catal 47:399–402

    Article  CAS  Google Scholar 

  52. Chandrasekharan K, Murty VS (1995) Radiation-induced paramagnetic silver centers in LiNaSO4. Physica B Condensed Matter 215:243–248

    Article  CAS  Google Scholar 

  53. Scire S, Crisafulli C, Minico S, Condorelli GG, Di Mauro A (2008) Selective oxidation of CO in H2-rich stream over gold/iron oxide: an insight on the effect of catalyst pretreatment. J Mol Catal A: Chem 284:24–32

    Article  CAS  Google Scholar 

  54. Kahlich MJ, Gasteiger HA, Behm RJ (1999) Kinetics of the selective low-temperature oxidation of CO in H2-rich gas over Au/α-Fe2O3. J Catal 182:430–440

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bulgarian Ministry of Education and Science under the National Research Program E+: Low Carbon Energy for the Transport and Households, Grant Agreement D01-214/2018. Research equipment of distributed research infrastructure INFRAMAT DO1- 382/18.12.2020 (part of Bulgarian National Roadmap for research infrastructures) supported by Bulgarian Ministry of Education and Science was used in this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Todorova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Todorova, S., Kolev, H., Karakirova, Y. et al. Preferential CO oxidation in hydrogen-rich gases over Ag catalysts supported on different supports. Reac Kinet Mech Cat 135, 1405–1422 (2022). https://doi.org/10.1007/s11144-022-02158-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02158-1

Keywords

Navigation