Skip to main content
Log in

Investigations on the Zn/Fe ratio and activation route during CO hydrogenation over porous iron/spinel catalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this article, a simplified iron/spinel catalyst system was adopted as the Fischer–Tropsch to light olefins (FTO) catalyst to rule out disturbances from efficient promoters (e.g., K or combination of S/Na). Supported by regular supports (e.g., Al2O3, carbon, etc.), unpromoted iron catalysts commonly have a maximum C2=–C4= hydrocarbon distribution below 28%. Supported by a composite oxide support (i.e., nominal composition, ZnAl4O7, calcined at 350 °C), our porous, unpromoted iron catalyst exhibits a maximum C2=–C4= hydrocarbon distribution of 40%, achieving a significant increase by ca. 42% in comparison with regular supports. Appropriate lifting of atomic Zn/Fe ratio, as well as, reducing at lower temperature plus mild carburization, both can make a supported iron catalyst more efficient in hindering C–C coupling and producing light olefins. The structure of ZnAl4O7 support remains stable in iron catalysts during CO hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anchieta CG, Assaf EM, Assaf JM (2019) Int J Hydrogen Energy 44:9316–9327

    Article  CAS  Google Scholar 

  2. Li Z, Xu H, Yang W, Xu M, Zhao F (2019) Fuel 246:466–475

    Article  CAS  Google Scholar 

  3. Aydin ES, Yucel O, Sadikoglu H (2019) Int J Hydrogen Energy 44:17389–17396

    Article  CAS  Google Scholar 

  4. Rezaei E, Dzuryk S (2019) Chem Eng Res Des 144:354–369

    Article  CAS  Google Scholar 

  5. Hu J, Li D, Lee D-J, Zhang Q, Wang W, Zhao S, Zhang Z, He C (2019) Bioresour Technol 280:371–377

    Article  CAS  Google Scholar 

  6. Hu J, Li C, Lee D-J, Guo Q, Zhao S, Zhang Q, Li D (2019) Bioresour Technol 280:183–187

    Article  CAS  Google Scholar 

  7. Ma Q, Guo L, Fang Y, Li H, Zhang J, Zhao T-S, Yang G, Yoneyama Y, Tsubaki N (2019) Fuel Process Technol 188:98–104

    Article  CAS  Google Scholar 

  8. Chein R-Y, Fung W-Y (2019) Int J Hydrogen Energy 44:14303–14315

    Article  CAS  Google Scholar 

  9. Banke K, Hegner R, Schroeder D, Schulz C, Atakan B, Kaiser SA (2019) Fuel 243:97–103

    Article  CAS  Google Scholar 

  10. Gai C, Zhu N, Hoekman SK, Liu Z, Jiao W, Peng N (2019) Energy Convers Manag 183:474–484

    Article  CAS  Google Scholar 

  11. Torres Galvis HM, Bitter JH, Ruitenbeek M, de Jong KP (2012) Science 335:835–838

    Article  CAS  Google Scholar 

  12. Torres Galvis HM, Koeken ACJ, Bitter JH, Davidian T, Ruitenbeek M, Dugulan AI, de Jong KP (2013) J Catal 303:22–30

    Article  CAS  Google Scholar 

  13. Xing Y, Zhao C, Jia G, Fang S, Liu Z (2018) J Nanopart Res 20:202. https://doi.org/10.1007/s11051-018-4304-5

    Article  CAS  Google Scholar 

  14. Zhong L, Yu F, An Y, Zhao Y, Sun Y, Li Z, Lin T, Lin Y, Qi X, Dai Y, Gu L, Hu J, Jin S, Shen Q, Wang H (2016) Nature 538:84–87

    Article  CAS  Google Scholar 

  15. Jiao F, Li J, Pan X, Xiao J, Li H, Ma H, Wei M, Pan Y, Zhou Z, Li M, Miao S, Li J, Zhu Y, Xiao D, He T, Yang J, Qi F, Fu Q, Bao X (2016) Science 351:1065–1068

    Article  CAS  Google Scholar 

  16. Cheng K, Gu B, Liu XL, Kang JC, Zhang QH, Wang Y (2016) Angew Chem Int Ed 55:4725–4728

    Article  CAS  Google Scholar 

  17. Zhou W, Cheng K, Kang J, Zhou C, Subramanian V, Zhang Q, Wang Y (2019) Chem Soc Rev 48:3193–3228

    Article  CAS  Google Scholar 

  18. Liu Z, Xing Y, Xue Y, Wu D, Fang S (2015) J Nanopart Res. https://doi.org/10.1007/s11051-015-2899-3

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hus M, Dasireddy VDBC, Strah Stefancic N, Likozar B (2017) Appl Catal B Environ 207:267–278

    Article  CAS  Google Scholar 

  20. Prasnikar A, Pavlisic A, Ruiz-Zepeda F, Kovac J, Likozar B (2019) Ind Eng Chem Res 58:13021–13029

    Article  CAS  Google Scholar 

  21. Dasireddy VDBC, Likozar B (2019) Renew Energy 140:452–460

    Article  CAS  Google Scholar 

  22. Wang S, Wang P, Shi D, He S, Zhang L, Yan W, Qin Z, Li J, Dong M, Wang J, Olsbye U, Fan W (2020) ACS Catal 10:2046–2059

    Article  CAS  Google Scholar 

  23. Su J, Zhou H, Liu S, Wang C, Jiao W, Wang Y, Liu C, Ye Y, Zhang L, Zhao Y, Liu H, Wang D, Yang W, Xie Z, He M (2019) Nat Commun 10:1–8

    Article  Google Scholar 

  24. Ni Y, Liu Y, Chen Z, Yang M, Liu H, He Y, Fu Y, Zhu W, Liu Z (2019) ACS Catal 9:1026–1032

    Article  CAS  Google Scholar 

  25. Zhou W, Kang J, Cheng K, He S, Shi J, Zhou C, Zhang Q, Chen J, Peng L, Chen M, Wang Y (2018) Angew Chem Int Ed 57:12012–12016

    Article  CAS  Google Scholar 

  26. Xing Y, Jia G, Liu Z, Fang S, Zhao C, Guo X, Suib SL (2019) ChemCatChem 11:3187–3199

    Article  CAS  Google Scholar 

  27. Iglesia E, Reyes SC, Madon RJ, Soled SL (1993) In: Eley DD, Pines H, Weisz PB (eds) Advances in catalysis, vol 39. Academic Press, New York, pp 221–302

    Google Scholar 

  28. Iglesia E, Reyes SC, Soled SL (1993) In: Becker RE, Pereira CJ (eds) Chemical industries, vol 51 (Computer-aided design of catalysts). Marcel Dekker, New York, pp 199–257

    Google Scholar 

  29. Liu Z, Xue Y, Wu D, Xing Y, Fang S (2015) Catal Lett 145:1941–1947

    Article  CAS  Google Scholar 

  30. Yang W, Gao H, Xiang H, Yin D, Yang Y, Yang J, Xu Y, Li Y (2001) Acta Chim Sin 59:1870–1877

    CAS  Google Scholar 

  31. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Simmieniewska T (1985) Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  32. Liu Z, Wu D, Guo X, Fang S, Wang L, Xing Y, Suib SL (2017) Chem Eur J 23:16213–16218

    Article  CAS  Google Scholar 

  33. Xing Y, Guo X, Wu D, Liu Z, Fang S, Suib SL (2017) J Alloys Compd 719:22–29

    Article  CAS  Google Scholar 

  34. Xing Y, Liu Z, Xue Y, Wu D, Fang S (2016) Catal Lett 146:682–691

    Article  CAS  Google Scholar 

  35. Liu Z, Wu D, Xing Y, Guo X, Fang S (2016) Appl Catal A Gen 514:164–172

    Article  CAS  Google Scholar 

  36. Dalai AK, Davis BH (2008) Appl Catal A Gen 348:1–15

    Article  CAS  Google Scholar 

  37. Chen X, Deng D, Pan X, Hu Y, Bao X (2015) Chem Commun 51:217–220

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (NSFC, No. 21571161), Special Funds for Basic Scientific Research Costs of Henan Provincial Universities (19KYYWF0402), Grant Program for Key Scientific Research Projects of Henan Provincial Higher Education Institutions (20A150044), and Research Funding for Ph.D. Faculty of Zhengzhou University of Light Industry (No. 2016BSJJ034/CLY20170069/LZX2016) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Xing.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 494 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Y., Guo, X., Jia, G. et al. Investigations on the Zn/Fe ratio and activation route during CO hydrogenation over porous iron/spinel catalysts. Reac Kinet Mech Cat 129, 755–772 (2020). https://doi.org/10.1007/s11144-020-01751-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01751-6

Keywords

Navigation